Page:A short history of astronomy(1898).djvu/177

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 99, 100]
Early Life of Tycho Brahe
131

by trying to estimate and to allow for the errors of his instruments.

In 1565 Tycho returned to Copenhagen, probably on account of the war with Sweden which had just broken out, and stayed about a year, during the course of which he lost his uncle. He then set out again (1566) on his travels, and visited Wittenberg, Rostock, Basle, Ingolstadt, Augsburg, and other centres of learning, thus making acquaintance with several of the most notable astronomers of Germany. At Augsburg he met the brothers Hainzel, rich citizens with a taste for science, for one of whom he designed and had constructed an enormous quadrant (quarter-circle) with a radius of about 19 feet, the rim of which was graduated to single minutes and he began also here the construction of his great celestial globe, five feet in diameter, on which he marked one by one the positions of the stars as he afterwards observed them.

In 1570 Tycho returned to his father at Helsingborg, and soon after the death of the latter (1571) went for a long visit to Steen Bille, an uncle with scientific tastes. During this visit he seems to have devoted most of his time to chemistry (or perhaps rather to alchemy), and his astronomical studies fell into abeyance for a time.

100. His interest in astronomy was fortunately revived by the sudden appearance, in November 1572, of a brilliant new star in the constellation Cassiopeia. Of this Tycho took a number of extremely careful observations; he noted the gradual changes in its brilliancy from its first appearance, when it rivalled Venus at her brightest, down to its final disappearance 16 months later. He repeatedly measured its angular distance from the chief stars in Cassiopeia, and applied a variety of methods to ascertain whether it had any perceptible parallax (chapter ii., §§ 43, 49). No parallax could be definitely detected, and he deduced accordingly that the star must certainly be farther off than the moon; as moreover it had no share in the planetary motions, he inferred that it must belong to the region of the fixed stars. To us of to-day this result may appear fairly commonplace, but most astronomers of the time held so firmly to Aristotle's doctrine that the heavens generally, and the region of the fixed stars in particular, were incorruptible and unchange-