Page:A short history of astronomy(1898).djvu/283

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 176—179]
Elliptic Motion: the Principia
223

to the Royal Society, a tract called Propositiones de Motu, the 11 propositions of which contained the results already mentioned and some others relating to the motion of bodies under attraction to a centre. Although the pro- positions were given in an abstract form, it was pointed out that certain of them applied to the case of the planets. Further pressure from Halley persuaded Newton to give his results a more permanent form by embodying them in a larger book. As might have been expected, the subject grew under his hands, and the great treatise which resulted contained an immense quantity of material not contained in the De Motu. By the middle of 1686 the rough draft was finished, and some of it was ready for press. Halley not only undertook to pay the expenses, but superintended the printing and helped Newton to collect the astronomical data which were necessary. After some delay in the press, the book finally appeared early in July 1687, under the title Philosophiae Naturalis Principia Mathematica.

178. The Principia, as it is commonly called, consists of three books in addition to introductory matter: the first book deals generally with problems of the motion of bodies, solved for the most part in an abstract form without special reference to astronomy; the second book deals with the motion of bodies through media which resist their motion, such as ordinary fluids, and is of comparatively small astronomical importance, except that in it some glaring inconsistencies in the Cartesian theory of vortices are pointed out; the third book applies to the circumstances of the actual solar system the results already obtained, and is in fact an explanation of the motions of the celestial bodies on Newton's mechanical principles.

179. The introductory portion, consisting of "Definitions" and "Axioms, or Laws of Motion," forms a very notable contribution to dynamics, being in fact the first coherent statement of the fundamental laws according to which the motions of bodies are produced or changed. Newton himself does not appear to have regarded this part of his book as of very great importance, and the chief results embodied in it, being overshadowed as it were by the more striking discoveries in other parts of the book, attracted comparatively little attention. Much of it must be