Page:A short history of astronomy(1898).djvu/285

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 180]
Newton's Laws of Motion: Mass
225

to attribute in some way to the action of the earth on the bodies. The ordinary process of weighing a body in a balance shews, further, that we are accustomed to think of weight as a measurable quantity. On the other hand, we know from Galilei's result, which Newton tested very carefully by a series of pendulum experiments, that the leaden and the wooden ball, if allowed to drop, fall with the same acceleration. If therefore we measure the effect which the earth produces on the two balls by their acceleration, then the earth affects them equally; but if we measure it by the power which they have of stretching strings, or by the power which one has of supporting the other in a balance, then the effect which the earth produces on the leaden ball is greater than that produced on the wooden ball. Taken in this way, the action of the earth on either ball may be spoken of as weight, and the weight of a body can be measured by comparing it in a balance with standard bodies.

The difference between two such bodies as the leaden and wooden ball may, however, be recognised in quite a different way. We can easily see, for example, that a greater effort is needed to set the one in motion than the other; or that if each is tied to the end of a string of given kind and whirled round at a given rate, the one string is more tightly stretched than the other. In these cases the attraction of the earth is of no importance, and we recognise a distinction between the two bodies which is independent of the attraction of the earth. This distinction Newton regarded as due to a difference in the quantity of matter or material in the two bodies, and to this quantity he gave the name of mass. It may fairly be doubted whether anything is gained by this particular definition of mass, but the really important step was the distinct recognition of mass as a property of bodies, of fundamental importance in dynamical questions, and capable of measurement.

Newton, developing Galilei's idea, gave as one measurement of the action exerted by one body on another the product of the mass by the acceleration produced—a quantity for which he used different names, now replaced by force. The weight of a body was thus identified with the