Page:A short history of astronomy(1898).djvu/286

From Wikisource
Jump to navigation Jump to search
This page has been validated.
226
A Short History of Astronomy
[Ch. IX.

force exerted on it by the earth. Since the earth produces the same acceleration in all bodies at the same place, it follows that the masses of bodies at the same place are proportional to their weights; thus if two bodies are compared at the same place, and the weight of one (as shewn, for example, by a pair of scales) is found to be ten times that of the other, then its mass is also ten times as great. But such experiments as those of Richer at Cayenne (chapter viii., § 161) shewed that the acceleration of falling bodies was less at the equator than in higher latitudes; so that if a body is carried from London or Paris to Cayenne, its weight is altered but its mass remains the same as before. Newton's conception of the earth's gravitation as extending as far as the moon gave further importance to the distinction between mass and weight; for if a body were removed from the earth to the moon, then its mass would be unchanged, but the acceleration due to the earth's attraction would be 60 × 60 times less, and its weight diminished in the same proportion.

Rules are also given for the effect produced on a body's motion by the simultaneous action of two or more forces.[1]

A further principle of great importance, of which only very indistinct traces are to be found before Newton's time, was given by him as the Third Law of Motion in the form: "To every action there is always an equal and contrary reaction; or, the mutual actions of any two bodies are always equal and oppositely directed." Here action and reaction are to be interpreted primarily in the sense of force. If a stone rests on the hand, the force with which the stone presses the hand downwards is equal to that with which the hand presses the stone upwards; if the earth attracts a stone downwards with a certain force, then the stone attracts the earth upwards with the same force, and so on. It is to be carefully noted that if, as in the last example, two bodies are acting on one another, the accelerations produced are not the same, but since force

  1. The familiar parallelogram of forces, of which earlier writers had had indistinct ideas, was clearly stated and proved in the introduction to the Principia, and was, by a curious coincidence, published also in the same year by Varignon and Lami.