Page:A short history of astronomy(1898).djvu/307

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 195]
Newton's Scientific Method

195. Newton's scientific method did not differ essentially from that followed by Galilei (chapter vi., § 134), which has been variously described as complete induction or as the inverse deductive method, the difference in name corresponding to a difference in the stress laid upon different parts of the same general process. Facts are obtained by observation or experiment; a hypothesis or provisional theory is devised to account for them; from this theory are obtained, if possible by a rigorous process of deductive reasoning, certain consequences capable of being compared with actual facts, and the comparison is then made. In some cases the first process may appear as the more important, but in Newton's work the really convincing part of the proof of his results lay in the verification involved in the two last processes. This has perhaps been somewhat obscured by his famous remark, Hypotheses non fingo (I do not invent hypotheses), dissociated from its context. The words occur in the conclusion of the Principia, after he has been speaking of universal gravitation:—

"I have not yet been able to deduce (deducere) from phenomena the reason of these properties of gravitation, and I do not invent hypotheses. For any thing which cannot be deduced from phenomena should be called a hypothesis."

Newton probably had in his mind such speculations as the Cartesian vortices, which could not be deduced directly from observations, and the consequences of which either could not be worked out and compared with actual facts or were inconsistent with them. Newton in fact rejected hypotheses which were unverifiable, but he constantly made hypotheses, suggested by observed facts, and verified by the agreement of their consequences with fresh observed facts. The extension of gravity to the moon (§ 173) is a good example: he was acquainted with certain facts as to the motion of falling bodies and the motion of the moon; it occurred to him that the earth's attraction might extend as far as the moon, and certain other facts connected with Kepler's Third Law suggested the law of the inverse square. If this were right, the moon's acceleration towards the earth ought to have a certain value, which could be