Page:A short history of astronomy(1898).djvu/337

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 219]
Bradley's Observations
273

characteristics—of eye and judgment—which make a first-rate observer; his instruments were mounted in the best known way for securing accuracy, and were constructed by the most skilful makers; he made a point of studying very carefully the defects of his instruments, and of allowing for them; his discoveries of aberration and nutation enabled him to avoid sources of error, amounting to a considerable number of seconds, which his predecessors could only have escaped imperfectly by taking the average of a number of observations; and his improved tables of refraction still further added to the correctness of his results.

Bessel estimates that the errors in Bradley's observations of the declination of stars were usually less than 4", while the corresponding errors in right ascension, a quantity which depends ultimately on a time-observation, were less than 15", or one second of time. His observations thus shewed a considerable advance in accuracy compared with those of Flamsteed (§ 198), which represented the best that had hitherto been done.

219. The next Astronomer Royal was Nathaniel Bliss (1700–1764), who died after two years. He was in turn succeeded by Nevil Maskelyne (1732–1811), who carried on for nearly half a century the tradition of accurate observation which Bradley had established at Greenwich, and made some improvements in methods.

To him is also due the first serious attempt to measure the density and hence the mass of the earth. By comparing the attraction exerted by the earth with that of the sun and other bodies, Newton, as we have seen (chapter ix., § 185), had been able to connect the masses of several of the celestial bodies with that of the earth. To connect the mass of the whole earth with that of a given terrestrial body, and so express it in pounds or tons, was a problem of quite a different kind. It is of course possible to examine portions of the earth's surface and compare their density with that of, say, water; then to make some conjecture, based on rough observations in mines, etc., as to the rate at which density increases as we go from the surface towards the centre of the earth, and hence to infer the average density of the earth. Thus

18