Page:A short history of astronomy(1898).djvu/366

From Wikisource
Jump to navigation Jump to search
This page has been validated.
300
A Short History of Astronomy
[Ch. XI.

slow diminution in the obliquity of the ecliptic. To these may be added the alterations in the rates of motion of Jupiter and Saturn discovered by Halley (chapter x., § 204).

Newton had shewn generally that the perturbing effect of another planet would cause displacements in the apses of any planetary orbit, and an alteration in the relative positions of the planes in which the disturbing and disturbed planet moved; but he had made no detailed calculations. Some effects of this general nature, in addition to those already known, were, however, indicated with more or less distinctness as the result of observation in various planetary tables published between the date of the Principia and the middle of the 18th century.

The irregularities in the motion of the earth, shewing themselves as irregularities in the apparent motion of the sun, and those of Jupiter and Saturn, were the most interesting and important of the planetary inequalities, and prizes for essays on one or another subject were offered several times by the Paris Academy.

The perturbations of the moon necessarily involved—by the principle of action and reaction—corresponding though smaller perturbations of the earth; these were discussed on various occasions by Clairaut and Euler, and still more fully by D'Alembert.

In Clairaut's paper of 1747 (§ 233) he made some attempt to apply his solution of the problem of three bodies to the case of the sun, earth, and Saturn, which on account of Saturn's great distance from the sun (nearly ten times that of the earth) is the planetary case most like that of the earth, moon, and sun (cf. § 228).

Ten years later he discussed in some detail the perturbations of the earth due to Venus and to the moon. This paper was remarkable as containing the first attempt to estimate masses of celestial bodies by observation of perturbations due to them. Clairaut applied this method to the moon and to Venus, by calculating perturbations in the earth's motion due to their action (which necessarily depended on their masses), and then comparing the results with Lacaille's observations of the sun. The mass of the moon was thus found to be about 1/67 and that of Venus 2/3 that of the earth; the first result was a considerable