Page:A short history of astronomy(1898).djvu/380

From Wikisource
Jump to navigation Jump to search
This page has been validated.
310
A Short History of Astronomy
[Ch. XI.

of the Mécanique Céleste. These were generally accepted in lieu of Bürg's, which had been in their turn an improvement on Mason's and Mayer's.

Later work on lunar theory may conveniently be regarded as belonging to a new period of astronomy (chapter xiii., § 286).

242. Observation had shewn the existence of inequalities in the planetary and lunar motions which seemed to belong to two different classes. On the one hand were inequalities, such as most of those of the moon, which went through their cycle of changes in a single revolution or a few revolutions of the disturbing body; and on the other such inequalities as the secular acceleration of the moon's mean motion or the motion of the earth's apses, in which a continuous disturbance was observed always acting in the same direction, and shewing no signs of going through a periodic cycle of changes.

The mathematical treatment of perturbations soon shewed the desirability of adopting different methods of treatment for two classes of inequalities, which corresponded roughly, though not exactly, to those just mentioned, and to which the names of periodic and secular gradually came to be attached. The distinction plays a considerable part in Euler's work (§ 236), but it was Lagrange who first recognised its full importance, particularly for planetary theory, and who made a special study of secular inequalities.

When the perturbations of one planet by another are being studied, it becomes necessary to obtain a mathematical expression for the disturbing force which the second planet exerts. This expression depends in general both on the elements of the two orbits, and on the positions of the planets at the time considered. It can, however, be divided up into two parts, one of which depends on the positions of the planets (as well as on the elements), while the other depends only on the elements of the two orbits, and is independent of the positions in their paths which the planets may happen to be occupying at the time. Since the positions of planets in their orbits change rapidly, the former part of the disturbing force changes rapidly, and produces in general, at short intervals of time, effects in opposite directions, first, for example, accelerating and then retarding the motion of