Page:De Raum Zeit Minkowski 018.jpg

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

— 9 —

always earlier, every point on the aft side of O, necessarily later than O. The limit corresponds to a complete folding up of the wedge-shaped cross-section between the cones in the plane manifoldness . In the figure drawn, this cross-section has been intentionally drawn with a different breadth.

Let us decompose a vector drawn from O towards x, y, z, t into its four components x, y, z, t. If the directions of the two vectors are respectively the directions of the radius vector OR of O at one of the surfaces , and additionally a tangent RS at the point R of the relevant surface, then the vectors shall be called normal to each other. Accordingly

which is the condition that the vectors with the components x, y, z, t and are normal to each other.

For the sums of vectors in different directions, the unit measuring rods are to be fixed in the following manner; — a space-like vector from to is always to have the sum 1, and a time-like vector from O to , is always to have the sum .

Let us now fix our attention upon the world-line of a substantial point running through the world-point P(x, y, z, t); then as we follow the progress of the line, the quantity

corresponds to the time-like vector-element dx, dy, dz, dt.

The integral of this sum, taken over the world-line from any fixed initial point to any variable endpoint P, may be called the "proper-time" of the substantial point in P. Upon the world-line, we may regard x, y, z, t, i.e., the components of the vector OP, as functions of the "proper-time" ; let denote their first differential-quotients with respect to , and their second differential quotients with respect to , and denote the corresponding vectors, i.e. the derivation of the vector OP with respect to the motion-vector in P, and the derivation of this motion-vector with respect to the acceleration-vector in P. There we have

i.e., the motion-vector is the time-like vector in the direction of the world-line at P of sum 1, the acceleration-vector at P is normal to the motion-vector at P, and is in any case a space-like vector.