Page:EB1911 - Volume 01.djvu/817

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
ALUMINIUM
771

cryolite saturated with alumina is 2·35, and that of the fluoride Al2F6 2NaF saturated with alumina 1·97. The latter therefore appears the better material, and was originally preferred by Hall; cryolite, however, dissolves more alumina, and has been finally adopted by both inventors.

Aluminium is a white metal with a characteristic tint which most nearly resembles that of tin; when impure, or after prolonged exposure to air it has a slight violet shade. Its atomic weight is 27 (26·77, H=1, according to J. Thomsen). It is trivalent. The specific gravity of cast metal Properties.is 2·583, and of rolled 2·688 at 4° C. It melts at 626° C. (freezing point 654·5°, Heycock and Neville). It is the third most malleable and sixth most ductile metal, yielding sheets 0·000025 in. in thickness, and wires 0·004 in. in diameter. When quite pure it is somewhat harder than tin, and its hardness is considerably increased by rolling. It is not magnetic. It stands near the positive end of the list of elements arranged in electromotive series, being exceeded only by the alkalis and metals of the alkaline earths; it therefore combines eagerly, under suitable conditions, with oxygen and chlorine. Its coefficient of linear expansion by heat is 0·0000222 (Richards) or 0·0000231 (Roberts-Austen) per 1° C. Its mean specific heat between 0° and 100° is 0·227, and its latent heat of fusion 100 calories (Richards). Only silver, copper and gold surpass it as conductors of heat, its value being 31·33 (Ag=100, Roberts-Austen). Its electrical conductivity, determined on 99·6% metal, is 60·5% that of copper for equal volumes, or double that of copper for equal weights, and when chemically pure it exhibits a somewhat higher relative efficiency. The average strength of 98% metal is approximately shown by the following table:—

  Elastic Limit,
 tons per sq. in. 
 Ultimate Strength 
tons per sq. in.
Reduction
 of Area % 
 Cast  . . . 3   7 15
 Sheet  . . .   51/2 11 35
 Bars  . . . 61/2 12 40
 Wire  . . . 7-13 13-29 60

Weight for weight, therefore, aluminium is only exceeded in tensile strength by the best cast steel, and its own alloy, aluminium bronze. An absolutely clean surface becomes tarnished in damp air, an almost invisible coating of oxide being produced, just as happens with zinc; but this film is very permanent and prevents further attack. Exposure to air and rain also causes slight corrosion, but to nothing like the same extent as occurs with iron, copper or brass. Commercial electrolytic aluminium of the best quality contains as the average of a large number of tests, 0·48% of silicon and 0·46% of iron, the residue being essentially aluminium itself. The metal in mass is not affected by hot or cold water, the foil is very slowly oxidized, while the amalgam decomposes rapidly. Sulphuretted hydrogen having no action upon it, articles made of it are not blackened in foggy weather or in rooms where crude coal gas is burnt. To inorganic acids, except hydrochloric, it is highly resistant, ranking well with tin in this respect; but alkalis dissolve it quickly. Organic acids such as vinegar, common salt, the natural ingredients of food, and the various extraneous substances used as food preservatives, alone or mixed together, dissolve traces of it if boiled for any length of time in a chemically clean vessel; but when aluminium utensils are submitted to the ordinary routine of the kitchen, being used to heat or cook milk, coffee, vegetables, meat and even fruit, and are also cleaned frequently in the usual fashion, no appreciable quantity of metal passes into the food. Moreover, did it do so, the action upon the human system would be infinitely less harmful than similar doses of copper or of lead.

The highly electro-positive character of aluminium is most important. At elevated temperatures the metal decomposes nearly all other metallic oxides, wherefore it is most serviceable as a metallurgical reagent. In the casting of iron, steel and brass, the addition of a trifling proportion (0·005%) removes oxide and renders the molten metal more fluid, causing the finished products to be more homogeneous, free from blow-holes and solid all through. On the other hand, its electro-positive nature necessitates some care in its utilization. If it be exposed to damp, to sea-water or to corrosive influences of any kind in contact with another metal, or if it be mixed with another metal so as to form an alloy which is not a true chemical compound, the other metal being highly negative to it, powerful galvanic action will be set up and the structure will quickly deteriorate. This explains the failure of boats built of commercially pure aluminium which have been put together with iron or copper rivets, and the decay of other boats built of a light alloy, in which the alloying metal (copper) has been injudiciously chosen. It also explains why aluminium is so difficult to join with low-temperature solders, for these mostly contain a large proportion of lead. This disadvantage, however, is often overestimated since in most cases other means of uniting two pieces are available.

The metal produces an enormous number of useful alloys, some of which, containing only 1 or 2% of other metals, combine the lightness of aluminium itself with far greater hardness and strength. Some with 90 to 99% of other metals exhibit the general properties of those metals conspicuously Alloys.improved. Among the heavy alloys, the aluminium bronzes (Cu, 90-97·5%; Al, 10-2·5%) occupy the most important position, showing mean tensile strengths increasing from 20 to 41 tons per sq. in. as the percentage of aluminium rises, and all strongly resisting corrosion in air or sea-water. The light copper alloys, in which the proportions just given are practically reversed, are of considerably less utility, for although they are fairly strong, they lack power to resist galvanic action. This subject is far from being exhausted, and it is not improbable that the alloy-producing capacity of aluminium may eventually prove its most valuable characteristic. In the meantime, ternary light alloys appear the most satisfactory, and tungsten and copper, or tungsten and nickel, seem to be the best substances to add.

The uses of aluminium are too numerous to mention. Probably the widest field is still in the purification of iron and steel. To the general public it appeals most strongly as a material for constructing cooking utensils. It is not brittle like porcelain and cast iron, not poisonous like lead-glazed Uses.earthenware and untinned copper, needs no enamel to chip off, does not rust and wear out like cheap tin-plate, and weighs but a fraction of other substances. It is largely replacing brass and copper in all departments of industry—especially where dead weight has to be moved about, and lightness is synonymous with economy—for instance, in bed-plates for torpedo-boat engines, internal fittings for ships instead of wood, complete boats for portage, motor-car parts and boiling-pans for confectionery and in chemical works. The British Admiralty employ it to save weight in the Navy, and the war-offices of the European powers equip their soldiers with it wherever possible. As a substitute for Solenhofen stone it is used in a modified form of lithography, which can be performed on rotary printing-machines at a high speed. With the increasing price of copper, it is coming into vogue as an electrical conductor for uncovered mains; it is found that an aluminium wire 0·126 in. in diameter will carry as much current as a copper wire 0·100 in. in diameter, while the former weighs about 79 ℔ and the latter 162 ℔ per mile. Assuming the materials to be of equal tensile strength per unit of area—hard-drawn copper is stronger, but has a lower conductivity—the adoption of aluminium thus leads to a reduction of 52% in the weight, a gain of 60% in the strength, and an increase of 26% in the diameter of the conductor. Bare aluminium strip has recently been tried for winding-coils in electrical machines, the oxide of the metal acting as insulators between the layers. When the price of aluminium is less than double the price of copper aluminium is cheaper than copper per unit of electric current conveyed; but when insulation is necessary, the smaller size of the copper wire renders it more economical. Aluminium conductors have been employed on heavy work in many places, and for telegraphy and telephony