Page:EB1911 - Volume 11.djvu/295

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
282  
FUEL
[GASEOUS


flue-dust in this gas. It is practically equal to a poor producer-gas (see below), and is everywhere used, first for heating the blast in Cowper stoves or similar apparatus, and secondly for raising all the steam required for the operation of the blast-furnace, that is, for driving the blowing-engines, hoisting the materials, &c. Where the iron ore is roasted previously to being fed into the furnace, this can also be done by this gas, but in some cases the waste in using it is so great that there is not enough left for the last purpose. The calorific power of this gas per cubic foot is from 80 to 120 B.Th.U.

Since about 1900 a great advance has been made in this field. Instead of burning the blast-furnace gas under steam boilers and employing the steam for producing mechanical energy, the gas is directly burned in gas-motors on the explosion principle. Thus upwards of three times the mechanical energy is obtained in comparison with the indirect way through the steam boiler. After all the power required for the operations of the blast-furnace has been supplied, there is a surplus of from 10 to 20 h.p. for each ton of pig-iron made, which may be applied to any other purpose.

(b) Coke-oven Gases.—Where the coking of coal is performed in the old beehive ovens or similar apparatus the gas issuing at the mouth of the ovens is lost. The attempts at utilizing the gases in such cases have not been very successful. It is quite different where coke is manufactured in the same way as illuminating gas, viz. by the destructive distillation of coal in closed apparatus (retorts), heated from the outside. This industry, which is described in detail in G. Lunge’s Coal-Tar and Ammonia (4th ed., 1909), originated in France, but has spread far more in Germany, where more than half of the coke produced is made by it; in the United Kingdom and the United States its progress has been much slower, but there also it has long been recognized as the only proper method. The output of coke is increased by about 15% in comparison with the beehive ovens, as the heat required for the process of distillation is not produced by burning part of the coal itself (as in the beehive ovens), but by burning part of the gas. The quality of the coke for iron-making is quite as good as that of beehive coke, although it differs from it in appearance. Moreover, the gases can be made to yield their ammonia, their tar, and even their benzene vapours, the value of which products sometimes exceeds that of the coke itself. And after all this there is still an excess of gas available for any other purpose.

As the principle of distilling the coal is just the same, whether the object is the manufacture of coal gas proper or of coke as the main product, although there is much difference in the details of the manufacture, it follows that the quality of the gas is very similar in both cases, so far as its heating value is concerned. Of course this heating value is less where the benzene has been extracted from coke-oven gas, since this compound is the richest heat-producer in the gas. This is, however, of minor importance in the present case, as there is only about 1% benzene in these gases.

The composition of coke-oven gases, after the extraction of the ammonia and tar, is about 53% hydrogen, 36% methane, 6% carbon monoxide, 2% ethylene and benzene, 0.5% sulphuretted hydrogen, 1.5% carbon dioxide, 1% nitrogen.

III. Coal Gas (Illuminating Gas).—Although ordinary coal gas is primarily manufactured for illuminating purposes, it is also extensively used for cooking, frequently also for heating domestic rooms, baths, &c., and to some extent also for industrial operations on a small scale, where cleanliness and exact regulation of the work are of particular importance. In chemical laboratories it is preferred to every other kind of fuel wherever it is available. The manufacture of coal gas being described elsewhere in this work (see Gas, § Manufacture), we need here only point out that it is obtained by heating bituminous coal in fireclay retorts and purifying the products of this destructive distillation by cooling, washing and other operations. The residual gas, the ordinary composition of which is given in the table below, amounts to about 10,000 cub. ft. for a ton of coal, and represents about 21% of its original heating value, 56.5% being left in the coke, 5.5% in the tar and 17% being lost. As we must deduct from the coke that quantity which is required for the heating of the retorts, and which, even when good gas producers are employed, amounts to 12% of the weight of the coal, or 10% of its heat value, the total loss of heat rises to 27%. Taking, further, into account the cost of labour, the wear and tear, and the capital interest on the plant, coal gas must always be an expensive fuel in comparison with coal itself, and cannot be thought of as a general substitute for the latter. But in many cases the greater expense of the coal gas is more than compensated by its easy distribution, the facility and cleanliness of its application, the general freedom from the mechanical loss, unavoidable in the case of coal fires, the prevention of black smoke and so forth. The following table shows the average composition of coal gas by volume and weight, together with the heat developed by its single constituents, the latter being expressed in kilogram-calories per cub. metre (0.252 kilogram-calories = 1 British heat unit; 1 cub. metre = 35.3 cub. ft.; therefore 0.1123 calories per cub. metre = 1 British heat unit per cub. foot).

Constituents. Volume
per cent.
Weight
per cent.
Heat-value
per Cubic
Metre
Calories.
Heat-value
per Quantity
contained in
1 Cub. Met.
Heat-value
per cent.
of Total.
Hydrogen, H2 47  7.4 2,582 1213 22.8
Methane, CH4 34  42.8 8,524 2898 54.5
Carbon monoxide, CO 9  19.9 3,043 273 5.1
Benzene vapour, C6H6 1.2 7.4 33,815 405 7.7
Ethylene, C2H4 3.8 8.4 13,960 530 9.9
Carbon dioxide, CO2 2.5 8.6 .. .. ..
Nitrogen, N2 2.5 5.5 .. .. ..
Total 100.0 100.0 .. 5319 100.0

One cubic metre of such gas weighs 568 grammes. Rich gas, or gas made by the destructive distillation of certain bituminous schists, of oil, &c., contains much more of the heavy hydrocarbons, and its heat-value is therefore much higher than the above. The carburetted water gas, very generally made in America, and sometimes employed in England for mixing with coal gas, is of varying composition; its heat-value is generally rather less than that of coal gas (see below).

IV. Combustible Gases produced by the Partial Combustion of Coal, &c.—These form by far the most important kind of gaseous fuel. When coal is submitted to destructive distillation to produce the illuminating gas described in the preceding paragraph, only a comparatively small proportion of the heating value of the coal (say, a sixth or at most a fifth part) is obtained in the shape of gaseous fuel, by far the greater proportion remaining behind in the shape of coke.

An entirely different class of gaseous fuels comprises those produced by the incomplete combustion of the total carbon contained in the raw material, where the result is a mixture of gases which, being capable of combining with more oxygen, can be burnt and employed for heating purposes. Apart from some descriptions of waste gases belonging to this class (of which the most notable are those from blast-furnaces), we must distinguish two ways of producing such gaseous fuels entirely different in principle, though sometimes combined in one operation. The incomplete combustion of carbon may be brought about by means of atmospheric oxygen, by means of water, or by a simultaneous combination of these two actions. In the first case the chemical reaction is

C + O = CO    
(a);

the nitrogen accompanying the oxygen in the atmospheric air necessarily remains mixed with carbon monoxide, and the resulting gases, which always contain some carbon dioxide, some