Page:EB1911 - Volume 28.djvu/207

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
VOLCANO
191


volcanic activity may be traced into Asia Minor and thence to Armenia and the Caucasus. East of Smyrna there is a great desolate tract which the ancients recognized as volcanic and termed the Catacecaumene (burnt country). The volcanic districts of Lydia were studied by Professor H. S . Washington. In the plateau of Armenia there are several extinct volcanic mountains, more or less destroyed, of which the best known is Ararat. Nimrud Dagh on the shore of Lake Van is said to have been in eruption in the year 1441. Dr F. Oswald has described the volcanoes of Armenia. Of the volcanoes in Persian territory not now active, Demavend, south of the Caspian, is an important example. Elburz is also described as an old volcano. It has been said that in Central Asia there are certain vents still active, and recent volcanic rocks are known from the Przhevalsky chain and other localities.

The number of volcanoes known to be actually active on the earth is generally estimated at between 300 and 400, but there is reason to believe that this estimate is far too low. If account be taken of those volcanic cones which have not been active in historic time, the total will probably rise to several thousands. The distribution of volcanoes at various periods of the earth's history, as revealed by the local occurrence of volcanic rocks at different horizons in the crust of the earth, is discussed under Geology. Periods of great earth movement have been marked by exceptional volcanic activity.

Causes of Vulcanicity.

In discussing the cause of vulcanicity two problems demand attention: first the origin of the heat necessary for the manifestation of volcanic phenomena, and secondly the nature of the force by which the heated matter is raised to the surface and ejected. According to the old view, which assumed that the earth was a spheroid of molten matter invested by a comparatively thin crust of solid rock, the explanation of the phenomena appeared fairly simple. The molten interior supplied the heated matter, while the shrinkage of the cooling crust produced fractures that formed the volcanic channels through which it was assumed the magma might be squeezed out in the process of contraction. When physicists urged the necessity of assuming that the globe was practically solid, vulcanologist's were constrained to modify their views. Following a suggestion of W. Hopkins of Cambridge, they supposed that the magma, instead of existing in a general central cavity, was located in comparatively small subterranean lakes. Some authorities again, like the Rev. O. Fisher, regarded the magma as constituting a liquid zone, intermediate between a solid core and a solid shell.

If solidification of the primitive molten globe proceeded from the centre outwards, so as to form a sphere practically solid, it is conceivable that portions of the original magma might nevertheless be retained in cavities, and thus form “residual lakes.” Although the mass might be for the most part solid, the outer portion, or “crust,” could conceivably have a honeycombed structure, and any magma retained in the cells might serve indirectly to feed the volcanoes. Neighbouring volcanoes seem in some cases to draw their supply of lava from independent sources, favouring the idea of local cisterns or “intercrustal reservoirs.” It is probable, however, that subterranean reservoirs of magma, if they exist, do not represent relics of an original fluid condition of the earth, but the molten material may be merely rock which has become fused locally by a temporary development of heat or more likely by a relief of pressure. It should be noted that the quantity of magma required to supply the most copious lava-flows is comparatively small, the greatest recorded outflow (that of Tomboro in Sumbawa, in 1815) not having exceeded, it is said, six cubic miles; and even this estimate is probably too high. Whilst in many cases the magma-cisterns may be comparatively small and temporary, it must be remembered that there are regions where the volcanic rocks are so similar throughout as to suggest a common origin, thus needing inter crustal reservoirs of great extent and capacity. It has been suggested that comparatively small basins, feeding individual volcanoes, may draw their supply from more extensive reservoirs at greater depths.

Much speculation has been rife as to the source of the heat required for the local melting of rock. Chemical action has naturally been suggested, especially that of superficial water, but Its adequacy may be doubted. After Sir Humphry Davy's discovery of the metals of the alkalis, he thought that their remarkable behaviour with water might explain the origin of subterranean heat; and in more recent years others have seen a local source of heat in the oxidation of large deposits of iron, such as that brought up in the basalt of Disco Island in Greenland. It has been assumed by Moissan and by Gautier that water might attack certain metallic carbides, if they occur as subterranean deposits, and give rise to some of the products characteristic of volcanoes. But it seems that all such action must be very limited, and utterly inadequate to the general explanation of volcanic phenomena. At the same time it must be remembered that access of water to a rock already heated may have an important physical effect by reducing its melting point, and may thus greatly assist in the production of a supply of molten matter. The admission of surface-waters to heated rocks is naturally regarded as an important source of motive power in consequence of the sudden generation of vapour, but it is doubtful to what extent it may contribute, if at all, to the origin of volcanic heat.

According to Robert Mallet a competent source of subterranean heat for volcanic phenomena might be derived from the transformation of the mechanical work of compressing and crushing parts of the crust of the earth as a consequence of secular contraction. This view he worked out with much ingenuity, supporting it by mathematical reasoning and an appeal to experimental evidence. It was claimed for the theory that it explained the linear distribution of volcanoes, their relation to mountain chains, the shallow depth of the foci and the intermittence of eruptive activity. A grave objection, however, is the difficulty of conceiving that the heat, whether due to crushing or compression, could be concentrated locally so as to produce a sufficient elevation of temperature for melting the rocks. According to the calculations of Rev. O. Fisher, the crushing could not, under the most favourable circumstances, evolve heat enough to account for volcanic phenomena.

Since pressure raises the melting-point of any solid that expands on liquefaction, it has been conjectured that many deep-seated rocks, though actually solid, may be potentially liquid; that is, they are maintained in a solid state by pressure only. Any local relief of pressure, such as might occur in the folding and faulting of rocks, would tend, without further accession of heat, to induce fusion. But although moderate pressure raises the fusing-point of most solids, it is believed, from modern researches, that very great pressures may have a contrary effect.

It is held by Professor S. Arrhenius that at great depths in the earth the molten rock, being above its critical point, can exist only in the gaseous condition; but a gas under enormous pressure may behave, so far as compressibility is concerned, like a rigid solid. He concludes, from the high density of the earth as a whole and from other considerations, that the central part of our planet consists of gaseous iron (about 80% of the earth's diameter) followed by a zone of rock magma in a gaseous condition (about 15%), which passes insensibly outwards into liquid rock (4%), covered by a thin solid crust (less than 1% of diameter). If water from the crust penetrates by osmosis through the sea-floor to the molten interior, it acts, at the high temperature, as an acid, and decomposes the silicates of the magma. The liquid rock, expanded and rendered more mobile by this water, rises in fissures, but in its ascent suffers cooling, so that the water then loses its power as an acid and is displaced by silicic acid, when the escaping steam gives rise to the explosive phenomena of the volcano. The mechanism of the volcano is therefore much like that of a geyser, a comparison long ago suggested by Rev. O. Fisher and other geologists.

According to the “planetesimal theory” of Professor T. C. Chamberlin and Dr F. R. Moulton, which assumes that the earth was formed by the accretion of vast numbers of small cosmical bodies called planetesimals, the original heat of the earth's interior was due chiefly to the compression of the growing globe by its own gravity. The heat, proceeding from the