Page:EB1911 - Volume 28.djvu/410

From Wikisource
Jump to navigation Jump to search
This page has been validated.
COLLECTING AREAS]
WATER SUPPLY
  393

considerable depth, and by far the larger part of them through a great length of filtering material, and must have taken so long a time to reach the well that their organic character has disappeared. The principal water-bearing formations, utilized in Great Britain by means of deep wells, are the Chalk and the New Red Sandstone. The Upper and Middle Chalk are permeable almost through their mass. They hold water like a sponge, but part with it under pressure to fissures by which they are intersected, and, in the case of the Upper Chalk, to ducts following beds of flints. A well sunk in these formations without striking any fissure or water-bearing flint bed, receives water only at a very slow rate; but if, on the other hand, it strikes one or more of the natural water-ways, the quantity of water capable of being drawn from it will be greatly increased.

It is a notable peculiarity of the Upper and Middle Chalk formations that below their present valleys the underground water passes more freely than elsewhere. This is explained by the fact that the Chalk fissures are almost invariably rounded and enlarged by the erosion of carbonic acid carried from the surface by the water passing through them. These fissures take the place of the streams in an impermeable area, and those beneath the valleys must obviously be called upon to discharge more water from the surface, and thus be brought in contact with more carbonic acid, than similar fissures elsewhere. Hence the best position for a well in the Chalk is generally that over which, if the strata were impermeable, the largest quantity of surface water would flow. The Lower Chalk formation is for the most part impermeable, though it contains many ruptures and dislocations or smashes, in the interstices of which large bodies of water, received from the Upper and Middle Chalk, may be naturally stored, or which may merely form passages for water derived from the Upper Chalk. Thus despite the impermeability of its mass large springs are occasionally found to issue from the Lower Chalk. A striking example is that known as Lydden Spout, under Abbot’s Cliff, near Dover. In practice it is usual in chalk formations to imitate artificially the action of such underground watercourses, by driving from the well small tunnels, or “adits” as they are called, below the water-level, to intercept fissures and water-bearing beds, and thus to extend the collecting area.

Next in importance to the Chalk formations as a source of underground water supply comes the Trias or New Red Sandstone, consisting in Great Britain of two main divisions, the Keuper above and the Bunter below. With the exception of the Red Marls forming the upper part of the Keuper, most of the New Red Sandstone is permeable, and some parts contain, when saturated, even more water than solid chalk; but, just as in the case of the chalk, a well or borehole in the sandstone yields very little water unless it strikes a fissure; hence, in New Red Sandstone, also, it is a common thing to form underground chambers or adits in search of additional fissures, and sometimes to sink many vertical boreholes with the same object in view.

As the formation approaches the condition of pure sand, the water-bearing property of any given mass increases, but the difficulty of drawing water from it without admixture of sand also increases. In sand below water there are, of course, no open fissures, and even if adits could be Wells in sand. usefully employed, the cost of constructing and lining them through the loose sand would be prohibitive. The well itself must be lined; and its yield is therefore confined to such water as can be drawn through the sides or the bottom of the lining without setting up a sufficient velocity to cause any sand to flow with the water. Hence it arises that, in sand formations, only shallow wells or small boreholes are commonly found. Imagine for a moment that the sand grains were by any means rendered immobile without change in the permeability of their inter spaces; we could then dispense with the iron or brickwork lining of the well; but as there would still be no cracks or fissures to extend the area of percolating water exposed to the open well, the yield would be very small. Obviously, it must be very much smaller when the lining necessary to hold up loose sand is used. Uncemented brickwork, or perforated ironwork, are the usual materials employed for lining the well and holding up the sand, and the quantity of water drawn is kept below the comparatively small quantity necessary to produce a velocity, through the joints or orifices, capable of disturbing the sand. The rate of increase of velocity towards any isolated aperture through which water passes into the side of a well sunk in a deep bed of sand is, in the neighbourhood of that aperture, inversely proportional to the square of the distance therefrom. Thus, the velocity across a little hemisphere of sand only 1/2 in. radius covering a 1-in. orifice in the lining is more than 1000 times the mean velocity of the same water approaching the orifice radially when 16 in. therefrom. This illustration gives some idea of the Artificial increase
of yield.
enormous increase of yield of such a well, if, by any means, we can get rid of the frictional sand, even from within the 16 in. radius. We cannot do this, but happily the grains in a sand formation differ very widely in diameter, and if, from the interstices between the larger grains in the neighbourhood of an orifice, we can remove the finer grains, the resistance to flow of water is at once enormously reduced. This was for the first time successfully done in a well, constructed by the Biggleswade Water Board in 1902, and now supplying water over a large area of North Bedfordshire. This well, 10 ft. diameter, was sunk through about 110 ft. of surface soil, glacial drift and impermeable gault clay and thence passed for a further depth of 70 ft. into the Lower Greensand formation, the outcrop of which, emerging on the south-eastern shore of the Wash, passes south-westwards, and in Bedfordshire attains a thickness exceeding 250 ft. The formation is probably more or less permeable throughout; it consists largely of loose sand and takes the general south-easterly dip of British strata. The Biggleswade well was sunk by processes better known in connexion with the sinking of mine shafts and foundations of bridges across the deep sands or gravels of bays, estuaries and great rivers. Its full capacity has not been ascertained; it much exceeds the present pumping power, and is probably greater than that of any other single well unassisted by adits or boreholes. This result is mainly due to the reduction of frictional resistance to the passage of water through the sand in the immediate neighbourhood of the well, by washing out the finer particles of sand and leaving only the coarser particles. For this purpose the lower 45 ft. of the cast-iron cylinders forming the well was provided with about 660 small orifices lined with gun-metal tubes or rings, each armed with numerous thicknesses of copper wire gauze, and temporarily closed with screwed plugs. On the removal of any plug, this wire gauze prevented the sand from flowing with the water into the well; but while the finer particles of sand remained in the neighbourhood of the orifice, the flow of water through the contracted area was very small. To remove this obstruction the water was pumped out while the plugs kept the orifices closed. A flexible pipe, brought down from a steam boiler above, was then connected with any opened orifice. This pipe was provided, close to the orifice, with a three-way cock, by means of which the steam might be first discharged into the sand, and the current between the cock and the well then suddenly reversed and diverted into the well. The effect of thus alternately forcing high-pressure steam among the sand, and of discharging high-pressure water contained in the sand into the well, is to break up any cohesion of the sand, and to allow all the finer particles in the neighbourhood of the orifice to rush out with the water through the wire gauze into the well. This process, in effect, leaves each orifice surrounded by a hemisphere of coarse sand across which the water flows with comparative freedom from a larger hemisphere where the corresponding velocity is very slow, and where the presence of finer and more obstructive particles is therefore unimportant. Many orifices through which water at first only dribbled were thus caused to discharge water with great force, and entirely free from sand, against the opposite side of the well, while the general result was to increase the inflow of water many times, and to entirely prevent the intrusion of sand. Where, however, a firm rock of any kind is encountered, the yield of a well (under a given head of water) can only be increased by enlargement