Page:MillerContraction.djvu/3

From Wikisource
Jump to navigation Jump to search
This page has been validated.
MORLEY AND MILLER.—THE FITZGERALD-LORENTZ EFFECT.
323

coalesce into one. At the beginning of June the two hours are about 11h. 20m. A.M., mean solar time, and 9h. 50m. P.M. At the time of our last set of observations, July 5th to July 9th, the hours were 11h. 40m. A.M. and 8h. 20m. P.M., local mean time.

After many trials, with filar micrometer, and with scale on mirror 8, we found it advisable to accumulate a great number of observations made as rapidly as might be. What we had to do, in presence of all the local disturbances of density of the air which sometimes made observation impossible and always made it difficult, was as if we were trying to measure the solar atmospheric tide. If we could vary the period of this tide at will by controlling the revolutions of the earth, we should doubtless get a result sooner by accelerating the latter and making a great number of observations in a given time, rather than by retarding the period in order to measure with very great precision the hourly height of a barometer. We therefore proceeded as follows. One observer walked around with the moving apparatus, his eye at the telescope, while he maintained the rotation by an occasional gentle pull on a cord so fixed as not to bring any strain to bear on the cross arms of the apparatus. The room was darkened. The other observer also went around with the apparatus; as an index showed the azimuth of the apparatus to be that indicated by one of sixteen equidistant marks, he called out the number or some other signal. The first observer replied with the reading for the given azimuth, which the second observer recorded. The next azimuth was called at the proper instant, the reading given, and so on. Half the time, perhaps, the observations were interrupted before they became numerous enough to be useful, being stopped by excessive displacement of fringes owing to temperature changes and the like. But patience is a possession without which no one is likely to begin observations of this kind. Runs of twenty and thirty turns, involving 320 or 480 readings, were not uncommon. A run of thirty turns meant that the observer, who could sometimes make a turn of sixteen readings in sixty-five or seventy-five seconds, walked half a mile while making the severe effort involved in keeping his eye at the moving eyepiece without the least interruption for half an hour. The work is, of course, somewhat exhausting.

Observation with this apparatus could not begin till the month of August, and we had to stop without having accomplished as much as was desirable. During the busy season of the school year, observation is impossible. We had therefore expected to resume our work in June. But we then found that our pine apparatus had so much suffered from the dryness of the building that we could not maintain the adjustment of our