Page:Newton's Principia (1846).djvu/104

From Wikisource
Jump to navigation Jump to search
This page has been validated.
98
the mathematical principles
[Sec. I.

and the intermediate arc ACB (which are always proportional to the former), will vanish, and ultimately acquire the ratio of equality.   Q.E.D.

Cor. 1. Whence if through B we draw BF parallel to the tangent, always cutting any right line AF passing through A in F, this line BF will be ultimately in the ratio of equality with the evanescent arc ACB; because, completing the parallelogram AFBD, it is always in a ratio of equality with AD.

Cor. 2. And if through B and A more right lines are drawn, as BE, BD, AF, AG, cutting the tangent AD and its parallel BF; the ultimate ratio of all the abscissas AD, AE, BF, BG, and of the chord and arc AB, any one to any other, will be the ratio of equality.

Cor. 3. And therefore in all our reasoning about ultimate ratios, we may freely use any one of those lines for any other.


LEMMA VIII.

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent AD, constitute three triangles RAB, RACB, RAD, and the points A and B approach and meet: I say, that the ultimate form of these evanescent triangles is that of similitude, and their ultimate ratio that of equality.

For while the point B approaches towards the point A, consider always AB, AD, AR, as produced to the remote points b, d, and r, and rbd as drawn parallel to RD, and let the arc Acb be always similar to the arc ACB. Then supposing the points A and B to coincide, the angle bAd will vanish; and therefore the three triangles rAb, rAcb, rAd (which are always finite), will coincide, and on that account become both similar and equal. And therefore the triangles RAB, RACB, RAD, which are always similar and proportional to these, will ultimately be come both similar and equal among themselves.   Q.E.D.

Cor. And hence in all reasonings about ultimate ratios, we may indifferently use any one of those triangles for any other.


LEMMA IX.

If a right line AE, and a curve Line ABC, both given by position, cut each other in a given angle, A; and to that right line, in another given angle, BD, CE are ordinately applied, meeting the curve in B, C; and the points B and C together approach towards and meet in the point A: I say, that the areas of the triangles ABD, ACE, will ultimately be one to the other in the duplicate ratio of the sides.