Page:Newton's Principia (1846).djvu/441

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Book III.]
of natural philosophy.
435

in N as 360AT² to 39,6355 AZ²; that is, as 9,0827646AT² to AZ². Wherefore if we suppose the circumference NAn of the whole circle to be divided into little equal parts, such as Aa, the time in which the sun would describe the little arc Aa, if the circle was quiescent, will be to the time of which it would describe the same arc, supposing the circle together with the nodes to be revolved about the centre T, reciprocally as 9,0827646AT² to 9,0827646AT² + AZ²; for the time is reciprocally as the velocity with which the little arc is described, and this velocity is the sum of the velocities of both sun and node. If, therefore, the sector NTA represent the time in which the sun by itself, without the motion of the node, would describe the arc NA, and the indefinitely small part ATa of the sector represent the little moment of the time in which it would describe the least arc Aa; and (letting fall aY perpendicular upon Nn) if in AZ we take dZ of such length that the rectangle of dZ into ZY may be to the least part ATa of the sector as AZ² to 9,0827646AT² + AZ², that is to say, that dZ may be to ½AZ as AT² to 9,0827646AT² + AZ²; the rectangle of dZ into ZY will represent the decrement of the time arising from the motion of the node, while the arc Aa is described; and if the curve NdGn is the locus where the point d is always found, the curvilinear area NdZ will be as the whole decrement of time while the whole arc NA is described; and, therefore, the excess of the sector NAT above the area NdZ will be as the whole time. But because the motion of the node in a less time is less in proportion of the time, the area AaYZ must also be diminished in the same proportion; which may be done by taking in AZ the line eZ of such length, that it may be to the length of AZ as AZ² to 9,0827646AT² + AZ²; for so the rectangle of eZ into ZY will be to the area AZYa as the decrement of the time in which the arc Aa is described to the whole time in which it would have been described, if the node had been quiescent; and, therefore, that rectangle will be as the decrement of the motion of the node. And if the curve NeFn is the locus of the point e, the whole area NeZ, which is the sum of all the decrements of that motion, will be as the whole decrement thereof during the time in which the arc AN is described; and the remaining area NAe will be as the remaining motion, which is the true motion of the node, during the time in which the whole arc NA is described by the joint motions of both sun and node. Now the area of the semi-circle is to the area of the figure NeFn found by the method of infinite series nearly as 793 to 60. But the motion corresponding or proportional to the whole circle was 19° 49′ 3″ 55‴; and therefore the motion corresponding to double the figure NeFn is 1° 29′ 58″ 2‴, which taken from the former motion leaves 18° 19′ 5″ 53‴, the whole motion of the node with respect to the fixed stars in the interval between two of its conjunctions with the sun; and this motion subducted from the annual motion of the sun 360°, leaves 341° 40′ 54″ 7‴,