Page:Popular Science Monthly Volume 13.djvu/223

From Wikisource
Jump to navigation Jump to search
This page has been validated.
ILLUSTRATIONS OF THE LOGIC OF SCIENCE.
211

for thousands of years, yet the inference that all swans were white was "not a good induction," because it was not known that color was a usual generic character (it, in fact, not being so by any means). But it is mathematically demonstrable that an inductive inference may have as high a degree of probability as you please independent of any antecedent knowledge of the constancy of the character inferred. Before it was known that color is not usually a character of genera, there was certainly a considerable probability that all swans were white. But the further study of the genera of animals led to the induction of their non-uniformity in regard to color. A deductive application of this general proposition would have gone far to overcome the probability of the universal whiteness of swans before the black species was discovered. When we do know anything in regard to the general constancy or inconstancy of a character, the application of that general knowledge to the particular class to which any induction relates, though it serves to increase or diminish the force of the induction, is, like every application of general knowledge to particular cases, deductive in its nature and not inductive.

In the third place, to say that inductions are true because similar events happen in similar circumstances—or, what is the same thing, because objects similar in some respects are likely to be similar in others—is to overlook those conditions which really are essential to the validity of inductions. When we take all the characters into account, any pair of objects resemble one another in just as many particulars as any other pair. If we limit ourselves to such characters as have for us any importance, interest, or obviousness, then a synthetic conclusion may be drawn, but only on condition that the specimens by which we judge have been taken at random from the class in regard to which we are to form a judgment, and not selected as belonging to any sub-class. The induction only has its full force when the character concerned has been designated before examining the sample. These are the essentials of induction, and they are not recognized in attributing the validity of induction to the uniformity of Nature. The explanation of induction by the doctrine of probabilities, given in the last of these papers, is not a mere metaphysical formula, but is one from which all the rules of synthetic reasoning can be deduced systematically and with mathematical cogency. But the account of the matter by a principle of Nature, even if it were in other respects satisfactory, presents the fatal disadvantage of leaving us quite as much afloat as before in regard to the proper method of induction. It does not surprise me, therefore, that those who adopt this theory have given erroneous rules for the conduct of reasoning, nor that the greater number of examples put forward by Mr. Mill in his first edition, as models of what inductions should be, proved in the light of further scientific progress so particularly unfortunate that they had to be replaced by others in later editions. One would have supposed that Mr. Mill might have based an induction on