Page:Popular Science Monthly Volume 13.djvu/562

From Wikisource
Jump to navigation Jump to search
This page has been validated.
544
THE POPULAR SCIENCE MONTHLY.

such crystals of argillaceous earth which the inventors submitted to the Academy, there were numerous pieces that could not be distinguished at all from natural rubies and sapphires. They possessed their crystalline shape, their weight, hardness, color, and adamantine lustre, although the latter was not altogether faultless.

How completely the imitation of Nature has succeeded, may be inferred from a peculiarity which the artificial rubies have in common with the natural ones: both, upon being heated, lose their rose-color, and do not recover it until they are cooled again. The diamond-cutters who were requested to grind these artificial rubies found them not only as hard as the natural ones, but in many instances even harder; they were not long in blunting their best tools made of the hardest steel. For the use of watch-makers they are, perhaps, better than the natural stones.

But jewelers, too, are certain, sooner or later, to derive a great deal of benefit from these discoveries. The rubies hitherto obtained, although very beautiful, did not equal the first-class natural stones; but they are only the first productions of a new process, and it is decidedly creditable to the inventors that they immediately divulged their method without trying to mystify the public. Now others, too, may follow up this new branch of a promising alchemy. Perhaps more time should be given to the crystals for their formation, for Nature had a great deal of time for such productions, and it was owing to this fact, perhaps, that it achieved such glorious triumphs. There can be no doubt but that, at some future time, these crystals of argillaceous earth will be colored also green, yellow, and purple, and that thus the precious stones, which were hitherto distinguished as Oriental emeralds, topazes, and amethysts, from inferior stones of the same name, will be produced. The addition "Oriental," in this connection, has no geographical meaning, and was applied by jewelers to the harder and better classes of emeralds, topazes, and amethysts. Perhaps these Oriental stones will be cheaper at an early day than the inferior ones, and the middle classes may wear as brilliant stones as princesses do now.

Diamonds, too, were the objects of similar processes, that is, by trying to bring about a slow separation of carbon from its combinations. However, Chemistry has to admit here that it cannot demonstrate, with any degree of accuracy, how Nature really produced the diamond. Some think that it could only have been formed at an enormously high temperature; others consider its very slow formation in a cold condition more probable; nay, there are scientists who regard it as the production of some organic agency, because there are frequently discerned in them green, cellular formations resembling certain algæ. In view of the rapid progress of synthetic chemistry, it might, perhaps, be as well for the diamond to maintain even in the eyes of chemists its time-honored name "adamas"—that is, the indomitable one. For what should the