Page:Popular Science Monthly Volume 20.djvu/214

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

enough, and in photographing the sun itself 160000 of a second is sufficient.

We owe to Wheatstone the conception that the idea of solidity is derived from the combination of two pictures of the same object in slightly different perspective. This he proved in 1833 by drawing two outlines of some geometrical figure or other simple object, as they would appear to either eye respectively, and then placing them so that they might be seen, one by each eye. The "stereoscope," thus produced, has been greatly popularized by photography.

For two thousand years the art of lighting had made little if any progress. Until the close of the last century, for instance, our lighthouses contained mere fires of wood or coal, though the construction had vastly improved. The Eddystone Lighthouse, for instance, was built by Smeaton in 1759; but for forty years its light consisted in a row of tallow candles stuck in a hoop. The Argand lamp was the first great improvement, followed by gas, and in 1863 by the electric light.

Just as light was long supposed to be due to the emission of material particles, so heat was regarded as a material, though ethereal, substance, which was added to bodies when their temperature was raised.

Davy's celebrated experiment of melting two pieces of ice by rubbing them against one another in the exhausted receiver of an air pump, had convinced him that the cause of heat was the motion of the invisible particles of bodies, as had been long before suggested by Newton, Boyle, and Hooke. Rum ford and Young also advocated the same view. Nevertheless, the general opinion, even until the middle of the present century, was that heat was due to the presence of a subtile fluid known as "caloric," a theory which is now entirely abandoned.

Melloni, by the use of the electric pile, vastly increased our knowledge of the phenomena of radiant heat. His researches were confined to the solid and liquid forms of matter. Tyndall studied the gases in this respect, showing that differences greater than those established by Melloni existed between gases and vapors, both as regards the absorption and radiation of heat. He proved, moreover, that the aqueous vapor of our atmosphere, by checking terrestrial radiation, augments the earth's temperature, and he considers that the existence of tropical vegetation—the remains of which now constitute our coal-beds—may have been due to the heat retained by the vapors which at that period were diffused in the earth's atmosphere. Indeed, but for the vapor in our atmosphere, a single night would suffice to destroy the whole vegetation of the temperate regions.

Inspired by a contemplation of Graham Bell's ingenious experiments with intermittent beams on solid bodies, Tyndall took a new and original departure; and regarding the sounds as due to changes