Page:Popular Science Monthly Volume 27.djvu/227

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE FUEL OF THE FUTURE.
213

of a century, seems to increase, greater wells being known in 1884 than in any previous year, and prices having fallen from two dollars per bottle for "Seneka-oil" to sixty cents per barrel for the same article under the name of crude petroleum. Hence we may assume that, as new pipe-lines are laid, the supply of natural gas available for use in the great manufacturing district of Pittsburg and vicinity will be increased, and the price of this fuel diminished in a corresponding ratio.

Natural gas is now supplied in Pittsburg at a small discount on the actual cost of coal used last year in the large manufacturing establishments, an additional saving being made in dispensing with firemen and avoidance of hauling ashes from the boiler-room. It is supplied, for domestic purposes, at twenty cents per one thousand cubic feet, which is not cheaper than coal in Pittsburg, but it is a thousand per cent cleaner; and in that respect it promises to prove a great blessing, not only to those who can afford to use it, but to the community at large, in the hope held out that the smoke and soot nuisance may be abated in part, if not wholly subdued, and that gleams of sunshine there may become less phenomenal in the future than they are at the present time. Twenty cents per thousand feet is too high a price to bring gas into general use for domestic purposes in a city where coal is cheap. Ten cents would be too much, and no doubt five cents per thousand would pay a profit. The fact is, the dealers in natural gas appear to be somewhat doubtful of the continuity of supply, and anxious to get back the cost of wells and pipes in one year, which, if successful, would be an enormous return on the investment.

There are objections to the use of natural gas by mill-operators—that it costs too much, and that the continuity of the supply is uncertain; by heads of families, that it is odorless, and, in case of leakage from the pipes, may fill a room and be ready to explode without giv ing the fragrant warning offered by common gas. Both of these objections will probably disappear under the experience that time must furnish. More wells and tributary lines will lessen the cost and tend to regulate the pressure for manufacturers. Cut-offs and escape-pipes outside of the house will reduce the risk of explosions within. The danger in the house may also be lessened by providing healthful ventilation in all apartments wherein gas shall be consumed.

This subject of the ventilation of rooms in which common gas is ordinarily used is beginning to attract attention. It is stated, upon scientific authority, that a jet of common gas, equivalent to twelve sperm-candles, consumes 5·45 cubic feet of oxygen per hour, producing 3·21 feet of carbonic-acid gas, vitiating, according to Dr. Tidy's "Handbook of Chemistry," 348·25 cubic feet of air. In every five cubic feet of pure air in a room there is one cubic foot of oxygen and four of nitrogen. Without oxygen human life, as well as light, would become extinct. It is asserted that one common gas-jet consumes as much oxygen as five persons.