Page:Popular Science Monthly Volume 45.djvu/233

From Wikisource
Jump to navigation Jump to search
This page has been validated.

properties of object glasses and mirrors, but a word should be added concerning eyepieces. Without a good eyepiece the best telescope will not perform well. The simplest of all eyepieces is a single double-convex lens. With such a lens the magnifying power of the telescope is measured by the ratio of the focal length of the objective to that of the eye lens. Suppose the first is sixty inches and the latter half an inch; then the magnifying power will be a hundred and twenty diameters—i. e., the disk of a planet, for instance, will be enlarged a hundred and twenty times along each diameter, and its area will be enlarged the square of a hundred and twenty, or fourteen thousand four hundred times. But in reckoning magnifying power, diameter, not area, is always considered. For practical use an eyepiece composed of an ordinary single lens is seldom advantageous, because good definition can only be obtained in the center of the field. Lenses made according to special formulæ, however, and called solid eyepieces, give excellent results, and for high powers are often to be preferred to any other. The eyepieces usually furnished with telescopes are, in their essential principles, compound microscopes, and they are of two descriptions, "positive" and "negative." The former generally goes under the name of its inventor, Ramsden, and the latter is named after the great Dutch astronomer, Huygens. The Huygens eyepiece consists of two plano-convex lenses whose focal

PSM V45 D233 Negative and positive eyepieces.jpg
Fig. 4.—Negative Eyepiece. Fig. 5.—Positive Eyepiece.

lengths are in the ratio of three to one. The smaller lens is placed next to the eye. Both lenses have their convex surfaces toward the object glass, and their distance apart is equal to half the sum of their focal lengths. In this kind of eyepiece the image is formed between the two lenses, and if the work is properly done such an eyepiece is achromatic. It is therefore generally preferred for mere seeing purposes. In the Ramsden eyepiece two plano-convex lenses are also used, but they are of equal focal length, are placed at a distance apart equal to two thirds of the focal length of either, and have their convex sides facing one another. With such an eyepiece the image viewed is beyond the farther or field lens instead of between the two lenses, and as this fact renders it easier to adjust wires or lines for measuring purposes in the focus of the eyepiece, the Ramsden construction is used when a micrometer is to be employed. In order to ascertain