Page:Popular Science Monthly Volume 62.djvu/36

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
30
POPULAR SCIENCE MONTHLY.

culminated in the actual synthesis of several members of the sugar group. Another instance is seen in the accurate information we now possess of the constitution of uric acid. When Miescher began his work on the chemical composition of the nuclei of cells, and separated from them the material he called nuclein, he little foresaw the wide practical application of his work. We now know that it is in the metabolism of cell-nuclei that we have to look for the oxidative formation of uric acid and other substances of the purine family. Already the chemical relationships of uric acid and nuclein have taught practical physicians some of the secrets that underlie the occurrence of gout and allied disorders.

With the time at my disposal, it would be impossible to discuss all the chemico-vital problems which the physiologists of the present day are attempting to solve, but there is one subject at which many of them are laboring which seems to me to be of supreme importance—I mean the chemical constitution of proteid or albuminous substances. Proteids are produced only in the living laboratory of plants and animals; proteid metabolism is the main chemical attribute of a living thing; proteid matter is the all-important material present in protoplasm. But in spite of the overwhelming importance of the subject chemists and physiologists alike have far too long fought shy of attempting to unravel the constitution of the proteid molecule. This molecule is the most complex that is known: it always contains five, and often six, or even seven elements. The task of thoroughly understanding its composition is necessarily vast, and advance slow. But little by little the puzzle is being solved, and this final conquest of organic chemistry, when it does arrive, will furnish physiologists with new light on many of the dark places of physiological science.

The revival of the vitalistic conception in physiological work appears to me a retrograde step. To explain anything we are not fully able to understand in the light of physics and chemistry by labeling it as vital or something we can never hope to understand is a confession of ignorance, and, what is still more harmful, a bar to progress. It may be that there is a special force in living things that distinguishes them from the inorganic world. If this is so, the laws that regulate this force must be discovered and measured, and I have no doubt that those laws when discovered will be found to be as immutable and regular as the force of gravitation. I am, however, hopeful that the scientific workers of the future will discover that this so-called vital force is due to certain physical or chemical properties of living matter which have not yet been brought into line with the known chemical and physical laws that operate in the inorganic world, but which as our knowledge of chemistry and physics increases will ultimately be found to be subservient to such laws.