Page:Popular Science Monthly Volume 79.djvu/330

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
326
THE POPULAR SCIENCE MONTHLY

cation would throw light on the nature of cell division and of that meristic process by which the repeated organs of living things are constituted, and I have much confidence that in the course of the analysis discoveries will be made bearing directly both on the general theory of heredity and on the practical industry of breeding.

In the application of science to the arts of agriculture, chemistry, the foundation of sciences, very properly and inevitably came first, while breeding remained under the unchallenged control of simple common sense alone. The science of genetics is so young that when we speak of what it also can do we must still for the most part ask for a long credit; but I think that if there is full cooperation between the practical breeder and the scientific experimenter, we shall be able to redeem our bonds at no remotely distant date. In the mysterious properties of the living bodies of plants and animals there is an engine capable of wonders scarcely yet suspected, waiting only for the constructive government of the human mind. Even in the seemingly rigorous tests and trials which have been applied to living material apparently homogeneous, it is not doubtful that error has often come in by reason of the individual genetic heterogeneity of the plants and animals chosen. A batch of fruit trees may be all of the same variety, but the stocks on which the variety was grafted have hitherto been almost always seminally distinct individuals, each with its own powers of luxuriance or restriction, their own root-systems and properties so diverse that only in experiments on a colossal scale can this diversity be supposed to be levelled down. Even in a closely bred strain of cattle, though all may agree in their "points," there may still be great genetic diversity in powers of assimilation and rapidity of attaining maturity, by which irregularities by no means negligible are introduced. The range of powers which organic variation and genetic composition can confer is so vast as to override great dissimilarities in the conditions of cultivation. This truth is familiar to every raiser and grower who knows it in the form that the first necessity is for him to get the right breed and the right variety for his work. If he has a wheat of poor yield, no amount of attention to cultivation or manuring will give a good crop. An animal that is a bad doer will remain so in the finest pasture. All praise and gratitude to the student of the conditions of life, for he can do, and has done, much for agriculture, but the breeder can do even more.

When more than fifteen years ago the proposal to found a school of agriculture in Cambridge was being debated, much was said of the importance of the chemistry of soils, of researches into the physiological value of food-stuffs, and of other matters then already prominent on the scientific horizon. I remember then interpolating with an appeal for some study of the physiology of breeding, which I urged should