Page:Popular Science Monthly Volume 8.djvu/665

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE GROUND BETWEEN ANIMALS AND PLANTS.
645

microscope; and, from that day to this, the rapid improvement of methods of investigation and the energy of a host of accurate observers have given greater and greater breadth and firmness to Schwann's great generalization, that a fundamental unity of structure obtains in animals and plants; and that, however diverse may be the fabrics, or tissues, of which their bodies are composed, all these varied structures result from the metamorphoses of morphological units (termed cells, in a more general sense than, that in which the word "cells" was at first employed), which are not only similar in animals and in plants respectively, but present a close fundamental resemblance when those of animals and those of plants are compared together.

The contractility which is the fundamental condition of locomotion has not only been discovered to exist far more widely among plants than was formerly imagined, but, in plants, the act of contraction has been found to be accompanied, as Dr. Burdon Sanderson's interesting investigations have shown, by a disturbance of the electrical state of the contractile substance comparable to that which was found by Du Bois-Reymond to be a concomitant of the activity of ordinary muscle in animals.

Again, I know of no tests by which the reaction of the leaves of the sundew and of other plants to stimuli, so fully and carefully studied by Mr. Darwin, can be distinguished from those acts of contraction following upon stimuli, which are called "reflex" in animals.

On each lobe of the bilobed leaf of Venus's fly-trap (Dionæa muscipula) are three delicate filaments which stand out at right angles from the surface of the leaf. Touch one of them with the end of a fine human hair, and the lobes of the leaf instantly close together[1] in virtue of an act of contraction of part of their substance, just as the body of a snail contracts into its shell when one of its "horns" is irritated.

The reflex action of the snail is the result of the presence of a nervous system in that animal. A molecular change takes place in the nerve of the tentacle, is propagated to the muscles by which the body is retracted, and, causing them to contract, the act of retraction is brought about. Of course the similarity of the acts does not necessarily involve the conclusion that the mechanism by which they are effected is the same; but it suggests a suspicion of their identity which needs careful testing.

The results of recent inquiries into the structure of the nervous system of animals converge toward the conclusion that the nerve-fibres, which we have hitherto regarded as ultimate elements of nervous tissue, are not such, but are simply the visible aggregations of vastly more attenuated filaments, the diameter of which dwindles down to the limits of our present microscopic vision, greatly as these have been extended by modern improvements of the microscope; and

  1. Darwin, "Insectivorous Plants," p. 289.