Page:Project Longshot - Advanced Design Program Project Report.pdf/50

From Wikisource
Jump to navigation Jump to search
This page has been validated.
49

A total input power of 250 kilowatts is needed for each laser that is transmitting. With an assumption of a 20% lasing efficiency, the transmitted power is 50 kilowatts. If the power is distributed isotropically over an area of 5.64 x 10^20 square meters (the area subtended by the laser beam when it reaches Earth), the power density is 8.87 x 10^-17 watts per square meter, or 222 photons per square meter per second. For a 12 meter radius receiving mirror (area of 452.4 square meters), the received power level is 4.01 x 10^-14 watts, or 100,000 photons per second. Using the assumption that a digital pulse 'on' level is 100 photons, the receiver sees 1000 pulses per second. A data rate of 1000 bits per second is low. Note that this rate is the minimum because the transmitter would be at maximum range. If extremely reliable lasers are used, each transmitter can operate at a slightly different wavelength, so the data rate would be up to six times greater depending upon the number of lasers used.

The communications system would use six 250 kilowatt lasers. Three would be placed on the outside of the fuel tanks with the star trackers for communications during the acceleration phase. Three more lasers would be attached to the probe head for communications during the deceleration and in-system phases of the mission. The receiving mirrors would be in geosynchronous orbit about the earth in a constellation of several mirrors with a central node serving as a relay station to TDRSS and the ground.