Page:Sm all cc.pdf/54

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
51

Crossplot interpretation, like any subjective pattern recognition, is subject to the ‘Rorschach effect’: the brain's bias toward ‘seeing’ patterns even in random data. The primary defense against the Rorschach effect is to subject each apparent pattern to some quantitative test, but this may be impractical. Another defense is to look at many patterns, of both random and systematic origins, in order to improve one’s ability to distinguish between the two.

Galison [1985] described the application of this approach in the bubble-chamber experiments at Berkeley. A computer program plotted histograms not only of the measured data but also of randomly generated pseudo-datasets. The investigator had to distinguish his datasets by recognizing which histograms had significant peaks. Louis Alvarez said that this program prevented many mistaken discovery claims and later retractions. Figure 2 makes me empathize with the problem faced by these particle physicists.

Data dispersion is inevitable with crossplots, and awareness of this dispersion is essential to crossplot interpretation. For example, consider the change through time of the percentage of American high school seniors who have ever smoked a cigarette. Figure 11a shows that this percentage increased from 73.6% to 75.3% in the three years from 1975 to 1978. If I were foolish enough to extrapolate from these two measurements, I could estimate that by the year 2022 100% of high school students will have tried cigarettes. The flaws are that one has no estimate of the errors implicit in these measurements and that extrapolation beyond the range of one’s data is hazardous. As a rule of thumb, it is moderately safe to extrapolate patterns to values of the independent variable that are perhaps 20% beyond that variable’s measured range, but extrapolation of Figure 11a to 2022 is more than an order of magnitude larger than the data range.

Figure 11b shows the eight subsequent determinations of percentage who have tried cigarettes. From this larger dataset it is evident that the apparent pattern of Figure 11a was misleading, and the actual trend is significantly downward. Based on these later results, we might speculate that one or both of the first two measurements had an error of about two percent, which masked a steady and possibly linear trend of decreasing usage. Alternatively, we might speculate that usage did increase temporarily. Is the steady trend of the rightmost seven points a result of improved polling techniques so that errors are decreased? Examination of such crossplots guides our considerations of errors and underlying patterns.