Page:A History of Mathematics (1893).djvu/71

From Wikisource
Jump to navigation Jump to search
This page has been validated.
52
A HISTORY OF MATHEMATICS.

must have required a ready knowledge of arithmetical and algebraical operations.

About 155 b.c. flourished Heron the Elder of Alexandria. He was the pupil of Ctesibius, who was celebrated for his ingenious mechanical inventions, such as the hydraulic organ, the water-clock, and catapult. It is believed by some that Heron was a son of Ctesibius. He exhibited talent of the same order as did his master by the invention of the eolipile and a curious mechanism known as "Heron's fountain." Great uncertainty exists concerning his writings. Most authorities believe him to be the author of an important Treatise on the Dioptra, of which there exist three manuscript copies, quite dissimilar. But M. Marie[14] thinks that the Dioptra is the work of Heron the Younger, who lived in the seventh or eighth century after Christ, and that Geodesy, another book supposed to be by Heron, is only a corrupt and defective copy of the former work. Dioptra contains the important formula for finding the area of a triangle expressed in terms of its sides; its derivation is quite laborious and yet exceedingly ingenious. "It seems to me difficult to believe," says Chasles, "that so beautiful a theorem should be found in a work so ancient as that of Heron the Elder, without that some Greek geometer should have thought to cite it." Marie lays great stress on this silence of the ancient writers, and argues from it that the true author must be Heron the Younger or some writer much more recent than Heron the Elder. But no reliable evidence has been found that there actually existed a second mathematician by the name of Heron.

"Dioptra," says Venturi, were instruments which had great resemblance to our modern theodolites. The book Dioptra is a treatise on geodesy containing solutions, with aid of these instruments, of a large number of questions in geometry, such as to find the distance between two points, of which one only