Page:A Treatise on Electricity and Magnetism - Volume 2.djvu/435

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
814].
STATEMENT OF THE FACTS.
403

accelerated with respect to the other during its passage through the medium.

In other words, the right-handed ray has performed a greater number of vibrations, and therefore has a smaller wave-length, within the medium, than the left-handed ray which has the same periodic time.

This mode of stating what takes place is quite independent of any theory of light, for though we use such terms as wave-length, circular-polarization, &c., which may be associated in our minds with a particular form of the undulatory theory, the reasoning is independent of this association, and depends only on facts proved by experiment.

813.] Let us next consider the configuration of one of these rays at a given instant. Any undulation, the motion of which at each point is circular, may be represented by a helix or screw. If the screw is made to revolve about its axis without any longitudinal motion, each particle will describe a circle, and at the same time the propagation of the undulation will be represented by the apparent longitudinal motion of the similarly situated parts of the thread of the screw. It is easy to see that if the screw is right-handed, and the observer is placed at that end towards which the undulation travels, the motion of the screw will appear to him left-handed, that is to say, in the opposite direction to that of the hands of a watch.
Fig. 67.
Hence such a ray has been called, originally by French writers, but now by the whole scientific world, a left-handed circularly-polarized ray.

A right-handed circularly-polarized ray is represented in like manner by a left-handed helix. In Fig. 67 the right-handed helix , on the right-hand of the figure, represents a left-handed ray, and the left-handed helix , on the left-hand, represents a right-handed ray.

814.] Let us now consider two such rays which have the same wave-length within the medium. They are geometrically alike in