Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/404

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
384
Conduction in Solutions and Gases,

Interpreting the properties discovered by Kohlrausch[1] in the light of the ideas of Williamson and Clausius regarding the spontaneous dissociation of electrolytes, Arrhenius inferred that in very dilute solutions the electrolyte is completely dissociated into ions, but that in more concentrated solutions the salt is less completely dissociated; and that as in all solutions the transport of electricity in the solution is effected solely by the movement of ions, the equivalent conductivity[2] must be proportional to the fraction which expresses the degree of ionization, By aid of these conceptions it became possible to estimate the dissociation quantitatively, and to construct a general theory of electrolytes.

Contemporary physicists and chemists found it difficult at first to believe that a salt exists in dilute solution only in the form of ions, e.g. that the sodium and chlorine exist separately and independently in a solution of common salt. But there is a certain amount of chemical evidence in favour of Arrhenius' conception. For instance, the tests in chemical analysis are really tests for the ions; iron in the form of a ferrocyanide, and chlorine in the form of a chlorate, do not respond to the characteristic tests for iron and chlorine respectively, which are really the tests for the iron and chlorine ions.

The general acceptance of Arrhenius' views was hastened by the advocacy of Ostwald, who brought to light further evidence in their favour. For instance, all permanganates in dilute solution show the same purple colour; and Ostwald considered their absorption-spectra to be identical;[3]this identity is easily accounted for on Arrhenius' theory, by supposing that the spectrum in question is that of the anion which corresponds to the acid radicle. The blue colour which is observed in dilute solutions of copper salts, even when the strong solution is not bine, may in the same way be

  1. Cf. p. 374.
  2. I.e. the ohmic specific conductivity of the solution divided by the number of gramme-equivalents of salt per unit volume.
  3. Examination of the spectra with higher dispersion does not altogether confirm this conclusion,