Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/64

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
44
Electric and Magnetic Science

transfer some of A's electricity to the glass, whence it is transferred to B. Thus A has a deficiency and B a superfluity of electricity; and if either of them approaches C, who has the normal amount, the distribution will be equalized by a spark. If, however, A and B are in contact, electricity flows between them so as to re-establish the original equality, and neither is then electrified with reference to C.

Thus electricity is not created by rubbing the glass, but only transferred to the glass from the rubber, so that the rubber loses exactly as much as the glass gains; the total quantity of electricity in any insulated system is invariable. This assertion is usually known as the principle of conservation of electric charge.

The condition of A and B in the experiment can evidently be expressed by plus and minus signs: A having a deficiency - e and B a superfluity + e of electricity. Franklin, at the commencement of his own experiments, was not acquainted with du Fay's discoveries: but it is evident that the electric fluid of Franklin is identical with the vitreous electricity of du Fay, and that du Fay's resinous electricity is, in Franklin's theory, merely the deficiency of a stock of vitreous electricity supposed to be possessed naturally by all ponderable bodies. In Franklin's theory we are spared the necessity for admitting that two quasi-material bodies can by their union annihilate each other, as vitreous and resinous electricity were supposed to do.

Some curiosity will naturally be felt as to the considerations which induced Franklin to attribute the positive character to vitreous rather than to resinous electricity. They seem to have been founded on a comparison of the brush discharges from conductors charged with the two electricities; when the electricity was resinous, the discharge was observed to spread over the surface of the opposite conductor "as if it flowed from it." Again, if a Leyden jar whose inner coating is electrified vitreously is discharged silently by a conductor, of whose pointed ends one is near the knob and the other near the outer coating, the point which is near the knob is seen in the dark to be illumi-