Page:A short history of astronomy(1898).djvu/370

From Wikisource
Jump to navigation Jump to search
This page has been validated.
304
A Short History of Astronomy
[Ch. XI.

rates of change of the elements of the varying ellipse could be calculated, and made some progress towards deducing from these data the actual elements; but he found the mathematical difficulties too great to be overcome except in some of the simpler cases, and it was reserved for the next generation of mathematicians, notably Lagrange, to shew the full power of the method.

237. Joseph Louis Lagrange was born at Turin in 1736, when Clairaut was just starting for Lapland and D'Alembert was still a child; he was descended from a French family three generations of which had lived in Italy. He shewed extraordinary mathematical talent, and when still a mere boy was appointed professor at the Artillery School of his native town, his pupils being older than himself. A few years afterwards he was the chief mover in the foundation of a scientific society, afterwards the Turin Academy of Sciences, which published in 1759 its first volume of Transactions, containing several mathematical articles by Lagrange, which had been written during the last few years. One of these[1] so impressed Euler, who had made a special study of the subject dealt with, that he at once obtained for Lagrange the honour of admission to the Berlin Academy.

In 1764 Lagrange won the prize offered by the Paris Academy for an essay on the libration of the moon. In this essay he not only gave the first satisfactory, though still incomplete, discussion of the librations (chapter vi., § 133) of the moon due to the non-spherical forms of both the earth and moon, but also introduced an extremely general method of treating dynamical problems,[2] which is the basis of nearly all the higher branches of dynamics which have been developed up to the present day.

Two years later (1766) Frederick II., at the suggestion of D'Alembert, asked Lagrange to succeed Euler (who had just returned to St. Petersburg) as the head of the mathematical section of the Berlin Academy, giving as a reason that the greatest king in Europe wished to have the greatest mathematician in Europe at his court.

  1. On the Calculus of Variations.
  2. The establishment of the general equations of motion by a combination of virtual velocities and D'Alembert's principle.