Page:BraceStLouis1904.djvu/3

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE ETHER AND MOVING MATTER.
107

on the one condition, viz. that the motion of the ether is differentially irrotational, that if we neglect the square of the aberration and of the time, the change in direction of the ray as it travels along is nil, and therefore the course of a ray is a straight line, notwithstanding the motion of the ether. Following out the analysis on this supposition, a body, a star for example, will appear displaced toward the direction in which the earth is moving through an angle equal to the ratio of the velocity of the earth to that of light, when moving normal to the star's direction. This rectilinearity of propagation of a ray, which would likely seem to be interfered with in the motion of the ether, is the tacit assumption made in explaining aberration. If the physical causes, in consequence of which the motion of the ether becomes irrotational, could be adduced, the theory of Stokes would satisfy completely aberration and the negative results of the many and various experimental investigations which have thus far been made and whose validity is unquestioned, whether in refraction, interference, diffraction, rotary polarization, double refraction, induction, electric convection, etc. In an ordinary fluid, tangential forces proportional to the relative velocities destroy the irrotational condition in a steady state of motion. If we suppose these forces to be diminished indefinitely we obtain now a motion totally different from that for the steady state when these forces are assumed to be absent initially; and hence such a motion would be unstable. When, however, tangential forces depending on relative displacements in the ether are considered, it becomes possible to explain the irrotational condition. Any deviation from this state, for example at a surface of slip, would be dissipated away into space with the velocity of light by means of transverse vibrations. He illustrates such apparent incompatibilities in physical states by successive dilutions of gelatine. Such a medium shows elastic tangential forces for small constraints, and yet apparent fluidity for motions through it, mending itself as soon as dislocated. He regards these qualities as consistent and self-sufficient to explain the phenomena in question. Against the view of Stokes, Lorentz raises objection to his assumptions concerning the ether motions in the neighborhood of the earth, which he considers inconsistent, a difficulty which he is unable to set aside. Larmor demurs against an appeal to a highly complex medium, such as pitch, for studying the behavior of a simple one like the ether. A time-rate much shorter than the time of relaxation will of course provide approximate rigidity, while a timerate much longer will provide approximate fluidity, but this requires inevitable dissipation. This objection would be valid for a viscous solid, but such Stokes apparently did not have in mind, since he specifically proves such a case unstable. A solid like pitch is a very different type of solid from that of a vesicular solid like jelly. An ether