Page:Brundtland Report.djvu/186

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

A/42/427
English
Page 186

Nuclear Regulatory Commission.[1] The most serious category of release through containment failure was placed at around 1 in 1,000,000 years of reactor operation. Post-accident analysis of both Harrisburg and Chernobyl – a completely different type of reactor - have show that in both cases, human operator error was the main cause. They occurred after about 2,000 and 4,000 reactor-years respectively.[2] The frequencies of such occurrences are well nigh impossible to estimate probabilistically. However, available analyses indicate that although the risk of a radioactive release accident is small, it is by no means negligible for reactor operations at the present time.

51. The regional health and environment effects of an accident are largely predictable from radioactive fall-out studies following early atomic weapons testing in the atmosphere and have been confirmed in practice following the Chernobyl accident. What could not be confidently predicted before Chernobyl were local effects of such an accident. A much clearer picture is now emerging as a result of the experiences there when a reactor exploded, following a series of infringements of the official safety regulations, on 26 April 1986, causing the worst reactor accident ever experienced. As a result, the whole district had to be managed on something like a 'war footing' and efforts resembling a large military operation were needed to contain the damage.

2.4 Radioactive waste disposal

52. Civil nuclear energy programmer worldwide have already generated many thousands of tons of spent fuel and high-level waste. Many governments have embarked on large-scale programmes to develop ways of isolating these from the biosphere for the many hundreds of thousands of years that they will remain hazardously radioactive.

53. But the problem of nuclear waste disposal remains unsolved. Nuclear waste technology has reached an advanced level of sophistication.[3] This technology has not however been fully tested or utilized and problems remain about disposal. There is particular concern about future recourse to ocean dumping and the disposal of contaminated waste in the territories of small or poor states that lack the capacity to impose strict safeguards. There should be a clear presumption that all countries that generate nuclear waste dispose of it within their own territories or under strictly monitored agreements between states.

3. The Current International Situation

54. During the last 25 years, a growing awareness of the difficulties outlined above has resulted in a wide range of reactions from technical experts, the public, and governments. Many experts still feel that so much can be learned from the problems experienced up to now. They argue that if the public climate allows them to solve the nuclear waste disposal and decommissioning issues and the cost of borrowing money remains reasonably below its 1980-82 peak. in the absence of viable new

/…
  1. Nuclear Regulatory Commission, Physical Processes in Reactor Meltdown Accidents, Appendix Ⅷ to Reactor Safety Study (WASH–1400) (Washington, DC: U.S. Government Printing Office, 1975).
  2. S. Islam and K. Lindgren, 'How many reactor accident will there be?', Nature, No. 322, pp. b91–92, 1986; A.W.F. Edwards, 'How many reactor accidents?' Nature, No. 324, pp 417–18, 1975.
  3. F.L. Parker et al., The Disposal of High Level Radioactive Waste – 1984, Vols. 1 & 2 (Stockholm: The Beijer Institute, 1984); F.L. Parker and R.E. Kasperson, International Redwaste Policies (Stockholm: The Beijer Institute, in press).