Page:Collected Physical Papers.djvu/22

From Wikisource
Jump to navigation Jump to search
This page has been validated.
2
POLARISATION OF ELECTRIC RAYS

ing structure between two crossed Nicols. The interposition of the crystal generally brightens the dark field. This is known as the depolarising effect, and is regarded as a delicate test for double refracting substances. There is, however, no depolarising action when the principal plane of the crystal coincides with the polarisation planes of either the Polariser or Analyser. The field also remains dark when the optical axis of the crystal is parallel to the incident ray.

A similar method was adopted for experimenting with polarised electric radiation. A parallel electric beam is first polarised by a wire grating. A similar grating acts as an Analyser. The two gratings are crossed, and the crystal to be examined is interposed. The Receiver is a modified form of "Coherer" with its associated voltaic cell and Galvanometer. Brightening of the field is indicated by a throw of the Galvanometer needle.

Apparatus used

The following are the different parts of a complete apparatus:—


Fig. 1. Polarisation Apparatus.

B, Metallic box enclosing the Ruhmkorff coil and Radiator.
K, The crystal to be examined. E, Voltaic Cell.
G, The Galvanometer. R, tube enclosing sensitive receiver.