Page:EB1911 - Volume 01.djvu/440

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
402 
AGRICULTURE
[BRITISH

crop is shrinking in area the tendency is to withdraw from it first the land least suited to its growth. The general average for the United Kingdom might then recede to rather less than 28 bushels of 60 ℔ per bushel, which was for a long time the accepted average—unless, of course, improved methods of cultivating and manuring the soil were to increase its general wheat-yielding capacity.[1]

Crops and Cropping.

The greater freedom of cropping and the less close adherence to the formal system of rotation of crops, which characterize the early years of the 10th century, rest upon a scientific basis. Experimental inquiry has done much to enlighten the farmer as to the requirements of plant-life, and to enable him to see how best to meet these requirements in the case of field crops. He cannot afford to ignore the results that have been gradually accumulated—the truths that have been slowly established—at the agricultural experiment stations in various parts of the world. Of these stations the greatest, and the oldest now existing, is that at Rothamsted, Harpenden, Herts, England, which was founded in 1843 by Sir John Bennet Lawes (q.v.). The results of more than half a century of sustained experimental inquiry were communicated to the world by Lawes and his collaborator, Sir J. H. Gilbert, in about 130 separate papers or reports, many of which were published, from 1847 onwards, in the Journal of the Royal Agricultural Society of England.[2]

In the case of plants the method of procedure was to grow some of the most important crops of rotation, each separately year after year, for many years in succession on the same land, (a) without manure, (b) with farmyard manure and (c) with a great variety of chemical manures; the same description of manure being, as a rule, applied year after year on the same plot. Experiments on an actual course of rotation, without manure, and with different manures, have also been made. Wheat, barley, oats, beans, clover and other leguminous plants, turnips, sugar beet, mangels, potatoes and grass crops have thus been experimented upon. Incidentally there have been extensive sampling and analysing of soils, investigations into rainfall and the composition of drainage waters, inquiries into the amount of water transpired by plants, and experiments on the assimilation of free nitrogen.

Cereals.—Amongst the field experiments there is, perhaps, not one of more universal interest than that in which wheat was grown for fifty-seven years in succession, (a) without manure, (b) with farmyard manure and (c) with various artificial manures. The results show that, unlike leguminous crops such as beans or clover, wheat may be successfully grown for many years in succession on ordinary arable land, provided suitable manures be applied and the land be kept clean. Even without manure the average produce over forty-six years, 1852–1897, was nearly thirteen bushels per acre, or about the average yield per acre of the wheat lands of the whole world. Mineral manures alone give very little increase, nitrogenous manures alone considerably more than mineral manures alone, but the mixture of the two considerably more than either separately. In one case, indeed, the average produce by mixed minerals and nitrogenous manure was more than that by the annual application of farmyard manure; and in seven out of the ten cases in which such mixtures were used the average yield per acre was from over two to over eight bushels more than the average yield of the United Kingdom (assuming this to be about twenty-eight bushels of 60 ℔ per bushel) under ordinary rotation. It is estimated that the reduction in yield of the unmanured plot over the forty years, 1852–1891, after the growth of the crops without manure during the eight preceding years, was, provided it had been uniform throughout, equivalent to a decline of one-sixth of a bushel from year to year due to exhaustion—that is, irrespectively of fluctuations due to season. It is related that a visitor from the United States, talking to Sir John Lawes, said, “Americans have learnt more from this field than from any other agricultural experiment in the world.”

Experiments upon the growth of barley for fifty years in succession on rather heavy ordinary arable soil resulted in showing that the produce by mineral manures alone is larger than that without manure; that nitrogenous manures alone give more produce than mineral manures alone; and that mixtures of mineral and nitrogenous manure give much more than either used alone—generally twice, or more than twice, as much as mineral manures alone. Of mineral constituents, whether used alone or in mixture with nitrogenous manures, phosphates are much more effective than mixtures of salts of potash, soda and magnesia. The average results show that, under all conditions of manuring—excepting with farmyard manure—the produce was less over the later than over the earlier periods of the experiments, an effect partly due to the seasons. But the average produce over forty years of continuous growth of barley was, in all cases where nitrogenous and mineral manures (containing phosphates) were used together, much higher than the average produce of the crop grown in ordinary rotation in the United Kingdom, and very much higher than the average in most other countries when so grown. The requirements of barley within the soil, and its susceptibility to the external influences of season, are very similar to those of its near ally, wheat. Nevertheless there are distinctions of result dependent on differences in the habits of the two plants, and in the conditions of their cultivation accordingly. In the British Isles wheat is, as a rule, sown in the autumn on a heavier soil, and has four or five months in which to distribute its roots, and so it gets possession of a wide range of soil and subsoil before barley is sown in the spring. Barley, on the other hand, is sown in a lighter surface soil, and, with its short period for root-development, relies in a much greater degree on the stores of plant-food within the surface soil. Accordingly it is more susceptible to exhaustion of surface soil as to its nitrogenous, and especially as to its mineral supplies; and in the common practice of agriculture it is found to be more benefited by direct mineral manures, especially phosphatic manures, than is wheat when sown under equal soil conditions. The exhaustion of the soil induced by both barley and wheat is, however, characteristically that of available nitrogen; and when, under the ordinary conditions of manuring and cropping, artificial manure is still required, nitrogenous manures are, as a rule, necessary for both crops, and, for the spring-sown barley, superphosphate also. Although barley is appropriately grown on lighter soils than wheat, good crops, of fair quality, may be grown on the heavier soils after another grain crop by the aid of artificial manures, provided that the land is sufficiently clean. Experiments similar to the foregoing were carried on for many years in succession at Rothamsted upon oats, and gave results which were in general accordance with those on the other cereal crops.

Additional significance to the value of the above experiments on wheat and barley is afforded by the fact that the same series, with but slight modifications, has also been carried out since 1876 at the Woburn (Bedfordshire) experimental farm of the

  1. The higher yield of wheat in the later years of the 19th century appears to be largely attributable to better grain-growing seasons. The yields in the experimental wheat-field at Rotharnsted—where there is no change either of land or of treatment—indicate this. The following figures show the average yields per acre of the selected plots at Rothamsted over six 8-yearly periods from 1852 to 1899, and afford evidence that the higher yield of later years is due to the seasons:—
      Bushels (of 60 ℔)
     Average of— per acre.
     8 years 1852–1859 ... 283/8
     8,,1860–1867 ... 287/8
     8,,1868–1875 ... 271/8
     8,,1876–1883 ... 251/4
     8,,1884–1891 ... 297/8
     8,,1892–1899 ... 30
    —————————— ———
    32,,1852–1883 ... 273/8
    16,,1884–1899 ... 30
    —————————— ———
    48,,1852–1899 ... 281/4

    The average of the first thirty-two years was thus 273/8 bushels per acre, of the last sixteen years 30 bushels, and of the whole forty-eight years 281/4 bushels.

  2. See J. B. Lawes and J. H. Gilbert, Rothamsted Memoirs on Agricultural Chemistry and Physiology, 7 vols. (1893–1899); A. D. Hall, Book of the Rothamsted Experiments (1905).