Page:EB1911 - Volume 01.djvu/726

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
684
ALKALI MANUFACTURE
  

this recovery is carried out in the most efficient manner, the process cannot possibly pay; but so much progress has been made in this direction that the loss of ammonia is very slight indeed, merely a fraction per cent. The ammonia is for the major part found in the mother-liquor as ammonium chloride. A smaller but still considerable portion exists here and in the washings in the shape of ammonium carbonates. These compounds differ in their behaviour to heat. The ammonium carbonates are driven out from their solutions by mere prolonged boiling, being thereby decomposed into ammonia, carbon dioxide and water, but the ammonium chloride is not volatile under these conditions, and must be decomposed by milk of lime: 2NH4Cl+Ca(OH)2=2NH3+CaCl2+2H2O. The solution of calcium chloride is run to waste, the ammonia is re-introduced into the process.

Both these reactions are carried out in tall cylindrical columns or “stills,” Consisting of a number of superposed cylinders, having perforated horizontal partitions, and provided with a steam-heating arrangement in the enlarged bottom portion. The milk of lime is introduced at a certain distance from the bottom. The steam causes the action of the lime on the ammonium chloride to take place in this lower portion of the still, from which the steam, mixed with all the liberated ammonia, rises into the upper portion of the column where its heat serves to drive out the volatile ammonium carbonate. Just below the top there is a cooling arrangement, so that nearly all the water is condensed and runs back into the column, while the ammonia, with the carbon dioxide formerly combined with part of it, passes on first through an outside cooler where the remaining water is condensed, and afterwards into the vessels, already described, where the ammonia is absorbed by a solution of salt and thus again introduced into the process.

The reversible character of the principal reaction has the consequence that a considerable portion of the sodium chloride (up to 33%) is lost, being contained in the waste calcium chloride solution which issues from the ammonia stills. This is, however, not of much importance, as it had been introduced in the shape of a brine where its value is very slight (6d. per ton of NaCl). It is true that all the chlorine combined with the sodium is lost partly as NaCl and partly as CaCl2; none of the innumerable attempts at recovering the chlorine from the waste liquor has been made to pay, and success is less likely than ever since the perfection of the electrolytic processes. (See Chlorine.) For all that, especially in consequence of the small amount of fuel required, and the total absence of the necessity of employing sulphur compounds as an intermediary, the ammonia-soda process has supplanted the Leblanc process almost entirely on the continent of Europe and to a great extent in Great Britain.

III. Electrolytic Alkali Manufacture

In theory by far the simplest process for making alkalis together with free chlorine is the electrolysis of sodium (or potassium) chloride. When this takes place in an aqueous solution, the alkaline metal at once reacts with the water, so that a solution of an alkaline hydrate is formed while hydrogen escapes. The reactions are therefore (we shall in this case speak only of the sodium compounds): (1) NaCl=Na+Cl, (2) Na+H2O=NaOH+H.

The chlorine escapes at the anode, the hydrogen at the cathode. If the chlorine and the sodium hydrate can act upon each other within the liquid, bleach-liquors are formed: 2NaOH+Cl2=NaOCl+NaOH+H2O. The production of these for the use of papermakers and bleachers of textile fabrics has become an important industry, but does not enter into our province.

If, however, the action of the chlorine on the sodium hydrate is prevented, which can be done in various ways, they can both be collected in the isolated state and utilized as has been previously described, viz. the chlorine can be used for the manufacture of liquid chlorine, bleaching-powder or other bleaching compounds, or chlorates, and the solution of sodium hydrate can be sold as such, or converted into solid caustic soda. Precisely the same can be done in the electrolysis of potassium chloride.

There is a third way of conducting the action, viz. so that the chlorine can act upon the caustic soda or potash at a higher concentration and temperature, in which case chlorates are directly formed in the liquid: KCl+3H2O=KClO3+3H2. This has indeed become the principal, because it is the cheapest, process for the manufacture of potassium and sodium chlorate. Perchlorates can also be made in this way.

In all these cases the chlorine, or the products made from it, really play a greater part than the alkali. From 58·5 parts by weight of NaCl we obtain theoretically 23Na=40NaOH=53Na2CO3, together with 35·5 Cl, or 100 bleaching-powder. As the weight of bleaching-powder consumed in the world is at most one-fifth of that of alkali, calculated as Na2CO3, it follows that only about one-tenth of all the alkali required could be made by electrolysis, even supposing the Leblanc process to be entirely abolished. The remaining nine-tenths of alkali must be supplied from other sources, chiefly the ammonia-soda process. As long as the operation of the Leblanc process is continued, it will supply a certain share of both kinds of products. Trustworthy statistics on this point cannot be obtained, because most firms withhold any information as to the extent of their production from the public.

The first patents for the electrolysis of alkaline chlorides were taken out in 1851 and several others later on; but commercial success was utterly impossible until the invention of the dynamo machine allowed the production of the electric current at a sufficiently cheap rate. The first application of this machine for the present purpose seems to have been made in 1875 and the number of patents soon rapidly increased; but although a large amount of capital was invested and many very ingenious inventions made their appearance, it took nearly another twenty years before the manufacture of alkali in this way was carried out in a continuous way on a large scale and with profitable results. A little earlier the manufacture of potassium chlorate (on the large scale since 1890) had been brought to a definite success by H. Gall and the Vicomte A. de Montlaur; a few years later the processes worked out at the Griesheim alkali works (near Frankfort) for the manufacture of caustic potash and chlorine established definitely the success of electrolysis in the field of potash, but even then none of the various processes working with sodium chloride had emerged from the experimental stage. Only more recently the manufacture of caustic soda by electrolysis has also been established as a permanent and paying industry, but as the greatest secrecy is maintained in everything belonging to this domain, and as neither patent specifications nor the sanguine assertions and anticipations of interested persons throw much real light on the actual facts of the case, nothing certain can be said either in regard to the date at which the profitable manufacture of caustic soda was first carried out by electrolysis, or as to what extent this is the case at the present moment.

We shall here give merely an outline of those more important processes which are known to be at present working profitably on a large scale.

(1) The Diaphragm process is probably the only one employed at present for the decomposition of potassium chloride, and it is also used for sodium chloride. A hot, concentrated solution of the alkaline chloride is treated by the electric current in large iron tanks which at the same time serve as cathodes. The anodes are made of retort-carbon or other chlorine-resisting material, and they are mounted in cells which serve as diaphragms. The material of these cells is usually cement, mixed with certain soluble salts which impart sufficient porosity to the material. The electrolysis is carried on until about a quarter of the chloride has been transformed; it must be stopped at this stage lest the formation of hypochlorite and chlorate should set in. The alkaline liquid is now transferred to vacuum pans, constructed in such a manner that the unchanged chloride, which “salts out” during the concentration, can be removed without disturbing the vacuum, and here at last a concentrated pure