Page:EB1911 - Volume 08.djvu/243

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
226
DIFFERENTIAL EQUATION
  

Another simple form is

dy/dx + y P=Q,

where P, Q are functions of x only; this is known as the linear equation, since it contains y and dy/dx only to the first degree. If ƒPdx = u, we clearly have

so that y = eueuQdx + A) solves the equation, and is the only possible solution, A being an arbitrary constant. The rule for the solution of the linear equation is thus to multiply the equation by eu, where u = ƒPdx.

A third simple and important form is that denoted by

ypx + ƒ(p),

where p is an abbreviation for dy/dx; this is known as Clairaut’s form. By differentiation in regard to x it gives

where

thus, either (i.) dp/dx= 0, that is, p is constant on the curve satisfying the differential equation, which curve is thus any one of the straight lines y = cx = ƒ(c), where c is an arbitrary constant, or else, (ii.) x + ƒ′(p) = 0; if this latter hypothesis be taken, and p be eliminated between x + ƒ′(p) = 0 and y = px + ƒ(p), a relation connecting x and y, not containing an arbitrary constant, will be found, which obviously represents the envelope of the straight lines y = cx + ƒ(c).

In general if a differential equation φ(x, y, dy/dx) = 0 be satisfied by any one of the curves F(x, y, c) = 0, where c is an arbitrary constant, it is clear that the envelope of these curves, when existent, must also satisfy the differential equation; for this equation prescribes a relation connecting only the co-ordinates x, y and the differential coefficient dy/dx, and these three quantities are the same at any point of the envelope for the envelope and for the particular curve of the family which there touches the envelope. The relation expressing the equation of the envelope is called a singular solution of the differential equation, meaning an isolated solution, as not being one of a family of curves depending upon an arbitrary parameter.

An extended form of Clairaut’s equation expressed by

yxF(p) + ƒ(p)

may be similarly solved by first differentiating in regard to p, when it reduces to a linear equation of which x is the dependent and p the independent variable; from the integral of this linear equation, and the original differential equation, the quantity p is then to be eliminated.

Other types of solvable differential equations of the first order are (1)

M dy/dx=N,

where M, N are homogeneous polynomials in x and y, of the same order; by putting v = y/x and eliminating y, the equation becomes of the first type considered above, in v and x. An equation (aB≷bA)

(ax+by+c)dy/dx=Ax+By+C

may be reduced to this rule by first putting x+h, y+k for x and y, and determining h, k so that ah+bk+c = 0, Ah+Bk+C = 0.

(2) An equation in which y does not explicitly occur,

ƒ(x, dy/dx)=0,

may, theoretically, be reduced to the type dy/dx = F(x); similarly an equation F(y, dy/dx) = 0.

(3) An equation

ƒ(dy/dx, x, y)=0,

which is an integral polynomial in dy/dx, may, theoretically, be solved for dy/dx, as an algebraic equation; to any root dy/dx = F1(x, y) corresponds, suppose, a solution φ1(x, y, c) = 0, where c is an arbitrary constant; the product equation φ1(x, y, c)φ2(x, y, c) . . . = 0, consisting of as many factors as there were values of dy/dx, is effectively as general as if we wrote φ1(x, y, c1)φ2(x, y, c2) . . . = 0; for, to evaluate the first form, we must necessarily consider the factors separately, and nothing is then gained by the multiple notation for the various arbitrary constants. The equation φ1(x, y, c)φ2(x, y, c) . . . = 0 is thus the solution of the given differential equation.

In all these cases there is, except for cases of singular solutions, one and only one arbitrary constant in the most general solution of the differential equation; that this must necessarily be so we may take as obvious, the differential equation being supposed to arise by elimination of this constant from the equation expressing its solution and the equation obtainable from this by differentiation in regard to x.

A further type of differential equation of the first order, of the form

dy/dx=A + By + Cy2

in which A, B, C are functions of x, will be briefly considered below under differential equations of the second order.

When we pass to ordinary differential equations of the second order, that is, those expressing a relation between x, y, dy/dx and d2y/dx2, the number of types for which the solution can be found by a known procedure is very considerably reduced. Consider the general linear equation

where P, Q, R are functions of x only. There is no method always effective; the main general result for such a linear equation is that if any particular function of x, say y1, can be discovered, for which

then the substitution y = y1η in the original equation, with R on the right side, reduces this to a linear equation of the first order with the dependent variable dη/dx. In fact, if y = y1η we have

and

and thus

if then

and z denote dη/dx, the original differential equation becomes

From this equation z can be found by the rule given above for the linear equation of the first order, and will involve one arbitrary constant; thence y = y1 η = y1 zdx + Ay1, where A is another arbitrary constant, will be the general solution of the original equation, and, as was to be expected, involves two arbitrary constants.

The case of most frequent occurrence is that in which the coefficients P, Q are constants; we consider this case in some detail. If θ be a root of the quadratic equation θ2 + θP + Q = 0, it can be at once seen that a particular integral of the differential equation with zero on the right side is y1 = eθx. Supposing first the roots of the quadratic equation to be different, and φ to be the other root, so that φ + θ = −P, the auxiliary differential equation for z, referred to above, becomes dz/dx + (θφ)z = Reθx which leads to ze(θφ) = B + Reθxdx, where B is an arbitrary constant, and hence to

or say to , where A, C are arbitrary constants and U is a function of x, not present at all when R = 0. If the quadratic equation θ2 + Pθ + Q = 0 has equal roots, so that 2θ = −P, the auxiliary equation in z becomes giving , where B is an arbitrary constant, and hence

or, say, , where A, B are arbitrary constants, and U is a function of x not present at all when R = 0. The portion or of the solution, which is known as the complementary function, can clearly be written down at once by inspection of the given differential equation. The remaining portion U may, by taking the constants in the complementary function properly, be replaced by any particular solution whatever of the differential equation

for if u be any particular solution, this has a form

or a form

thus the general solution can be written

or

where A − A0, B − B0, like A, B, are arbitrary constants.

A similar result holds for a linear differential equation of any order, say

where P1, P2, . . . Pn are constants, and R is a function of x. If we form the algebraic equation θn + P1θn−1 + . . . + Pn = 0, and all the roots of this equation be different, say they are θ1, θ2, . . . θn, the general solution of the differential equation is

where A1, A2, . . . An are arbitrary constants, and u is any