Page:EB1911 - Volume 11.djvu/663

From Wikisource
Jump to navigation Jump to search
This page has been validated.
HISTORICAL DEVELOPMENT]
GEOLOGY
    643


of science. His share in the classification and description of the mollusca and in founding invertebrate palaeontology, his theory of organic evolution and his philosophical treatment of many biological questions have been tardily recognized, but his contributions to geology have been less generally acknowledged. When he accepted the “professorship of zoology; of insects, of worms and of microscopic animals” at the Museum of Natural History, Paris, in 1793, he at once entered with characteristic ardour and capacity into the new field of research then opened to him. In dealing with the mollusca he considered not merely the living but also the extinct forms, especially the abundant, varied and well-preserved genera and species furnished by the Tertiary deposits of the Paris basin, of which he published descriptions and plates that proved of essential service in the stratigraphical work of Cuvier and Alexandre Brongniart (1770–1847). His labours among these relics of ancient seas and lakes led him to ponder over the past history of the globe, and as he was seldom dilatory in making known the opinions he had formed, he communicated some of his conclusions to the National Institute in 1799. These, including a further elaboration of his views, he published in 1802 in a small volume entitled Hydrogéologie.

This treatise, though it did not reach a second edition and has never been reprinted, deserves an honourable place in geological literature. Its object, the author states, was to present some important and novel considerations, which he thought should form the basis of a true theory of the earth. He entirely agreed with the doctrine of the subaerial degradation of the land and the erosion of valleys by running water. Not even Playfair could have stated this doctrine more emphatically, and it is worthy of notice that Playfair’s Illustrations of the Huttonian Theory appeared in the same year with Lamarck’s book. The French naturalist, however, carried his conclusions so far as to take no account of any great movements of the terrestrial crust, which might have produced or modified the main physical features of the surface of the globe. He thought that all mountains, except such as were thrown up by volcanic agency or local accidents, have been cut out of plains, the original surfaces of which are indicated by the crests and summits of these elevations.

Lamarck, in reflecting upon the wide diffusion of fossil shells and the great height above the sea at which they are found, conceived the extraordinary idea that the ocean basin has been scoured out by the sea, and that, by an impulse communicated to the waters through the influence chiefly of the moon, the sea is slowly eating away the eastern margins of the continents, and throwing up detritus on their western coasts, and is thus gradually shifting its basin round the globe. He would not admit the operation of cataclysms; but insisted as strongly as Hutton on the continuity of natural processes, and on the necessity of explaining former changes of the earth’s surface by causes which can still be seen to be in operation. As might be anticipated from his previous studies, he brought living things and their remains into the forefront of his theory of the earth. He looked upon fossils as one of the chief means of comprehending the revolutions which the surface of the earth has undergone; and in his little volume he again and again dwells on the vast antiquity to which these revolutions bear witness. He acutely argues, from the condition of fossil shells, that they must have lived and died where their remains are now found.

In the last part of his treatise Lamarck advances some peculiar opinions in physics and chemistry, which he had broached eighteen years before, but which had met with no acceptance among the scientific men of his time. He believed that the tendency of all compound substances is to decay, and thereby to be resolved into their component constituents. Yet he saw that the visible crust of the earth consists almost wholly of compound bodies. He therefore set himself to solve the problem thus presented. Perceiving that the biological action of living organisms is constantly forming combinations of matter, which would never have otherwise come into existence, he proceeded to draw the extraordinary conclusion that the action of plant and animal life (the Pouvoir de la vie) upon the inorganic world is so universal and so potent, that the rocks and minerals which form the outer part of the earth’s crust are all, without exception, the result of the operations of once living bodies. Though this sweeping deduction must be allowed to detract from the value of Lamarck’s work, there can be no doubt that he realized, more fully than any one had done before him, the efficacy of plants and animals as agents of geological change.

The last notable contributor to the cosmological literature of geology was another illustrious Frenchman, the comparative anatomist Cuvier (1769–1832). He was contemporary with Lamarck, but of a very different type of mind. The brilliance of his speculations, and the charm with which he expounded Cuvier. them, early gained for him a prominent place in the society of Paris. He too was drawn by his zoological studies to investigate fossil organic remains, and to consider the former conditions of the earth’s surface, of which they are memorials. It was among the vertebrate organisms of the Paris basin that he found his chief material, and from them that he prepared the memoirs which led to him being regarded as the founder of vertebrate palaeontology. But beyond their biological interest, they awakened in him a keen desire to ascertain the character and sequence of the geographical revolutions to which they bear witness. He approached the subject from an opposite and less philosophical point of view than that of Lamarck, coming to it with certain preconceived notions, which affected all his subsequent writings. While Lamarck was by instinct an evolutionist, who sought to trace in the history of the past the operation of the same natural processes as are still at work, Cuvier, on the other hand, was a catastrophist, who invoked a succession of vast cataclysms to account for the interruptions in the continuity of the geological record.

In a preliminary Discourse prefixed to his Recherches sur les ossemens fossiles (1821) Cuvier gave an outline of what he conceived to have been the past history of our globe, so far as he had been able to comprehend it from his investigations of the Tertiary formations of France. He believed that in that history evidence can be recognized of the occurrence of many sudden and disastrous revolutions, which, to judge from their effects on the animal life of the time, must have exceeded in violence anything we can conceive at the present day, and must have been brought about by other agencies than those which are now in operation. Yet, in spite of these catastrophes, he saw that there has been an upward progress in the animal forms inhabiting the globe, until the series ended in the advent of man. He could not, however, find any evidence that one species has been developed from another, for in that case there should have been traces of intermediate forms among the stratified formations, where he affirmed that they had never been found. A prominent position in the Discourse is given to a strenuous argument to disprove the alleged antiquity of some nations, and to show that the last great catastrophe occurred not more than some 5000 or 6000 years ago. Cuvier thus linked himself with those who in previous generations had contended for the efficacy of the Deluge. But his researches among fossil animals had given him a far wider outlook into the geological past, and had opened up to him a succession of deeply interesting problems in the history of life upon the earth, which, though he had not himself material for their solution, he could foresee would be cleared up in the future.

Gradual Shaping of Geology into a Distinct Branch of Science.—It will be seen from the foregoing historical sketch that it was only after the lapse of long centuries, and from the labours of many successive generations of observers and writers, that what we now know as the science of geology came to be recognized as a distinct department of natural knowledge, founded upon careful and extended study of the structure of the earth, and upon observation of the natural processes, which are now at work in changing the earth’s surface. The term “geology,”[1] descriptive of this branch of the investigation of nature, was not proposed until the last quarter of the 18th century by Jean André De Luc (1727–1817) and Horace Benedict De Saussure (1740–1749). But the science was then in a markedly half-formed condition, theoretical speculation still in large part supplying the place of deductions from a detailed examination of actual fact. In 1807 a few enterprising spirits founded the Geological Society of London for the special purpose of counteracting the prevalent tendency and confining their intention “to investigate the mineral structure of the earth.” The cosmogonists and framers of Theories of the Earth were succeeded by other schools of thought. The Catastrophists saw in the composition of the crust of the earth distinct evidence that the forces of nature were once much more stupendous in their operation than they now are, and that they had from time to time devastated the earth’s surface; extirpating the races of plants and animals, and preparing the ground for new creations of organized life. Then came the Uniformitarians, who, pushing the doctrines of Hutton to an extreme which he did not propose, saw no evidence that the activity of the various geological causes has ever seriously differed from what it is at present. They were inclined to disbelieve that the stratified formations of the earth’s crust furnish conclusive evidence of a gradual progression, from simple types of life in the oldest strata to the most highly developed forms in the youngest; and saw no reason why remains of the higher vertebrates should not be met with among the Palaeozoic formations. Sir Charles Lyell (1797–1875) was the great leader of this school. His admirably clear and philosophical presentations of geological facts which, with unwearied industry, he collected from the writings of observers in all parts of the world, impressed his views upon the whole English-speaking world, and gave to geological science a coherence and interest which largely accelerated its progress. In his later years, however, he frankly accepted the views of Darwin in regard to the progressive character of the geological record.

The youngest of the schools of geological thought is that of the Evolutionists. Pointing to the whole body of evidence from inorganic and organic nature, they maintain that the history of our planet has been one of continual and unbroken development from the earliest cosmical beginnings down to the present time, and that the crust of the earth contains an abundant, though incomplete, record of the successive stages through which the plant and animal

  1. In De Luc’s Lettres physiques et morales sur les montagnes (1778), the word “cosmology” is used for our science, the author stating that “geology” is more appropriate, but it “was not a word in use.” In a completed edition, published in 1779, the same statement is made, but “geology” occurs in the text; in the same year De Saussure used the word without any explanation, as if it were well known.