Page:EB1911 - Volume 11.djvu/672

From Wikisource
Jump to navigation Jump to search
This page has been validated.
652   
GEOLOGY
[COSMICAL ASPECTS


follow each other in apparently uninterrupted sequence, and might be thought to have been deposited continuously at the same general rate, and without the intervention of any pause, it can be demonstrated that sometimes an inch or two of sediment much, on certain horizons, represent the deposit of an enormously longer period than a hundred or a thousand times the same amount of sediment on other horizons. A prolonged study of these questions leads to a profound conviction that in many parts of the geological record the time represented by sedimentary deposits may be vastly less than the time which is not so represented.

It has often been objected that the present rate of geological change ought not to be taken as a measure of the rate in past time, because the total sum of terrestrial energy has been steadily diminishing, and geological processes must consequently have been more vigorous in former ages than they are now. Geologists do not pretend to assert that there has been no variation or diminution in the activities of the various processes which they have to study. What they do insist on is that the present rate of change is the only one which we can watch and measure, and which will thus supply a statistical basis for any computations on the subject. But it has been dogmatically affirmed that because terrestrial energy has been diminishing therefore all kinds of geological work must have been more vigorously and more rapidly carried on in former times than now; that there were far more abundant and more stupendous volcanoes, more frequent and more destructive earthquakes, more gigantic upheavals and subsidences, more powerful oceanic waves and tides, more violent atmospheric disturbances with heavier rainfall and more active denudation.

It is easy to make these assertions, and they look plausible; but, after all, they rest on nothing stronger than assumption. They can be tested by an appeal to the crust of the earth, in which the geological history of our planet has been so fully recorded. Had such portentous manifestations of geological activity ever been the normal condition of things since the beginning of that history, there ought to be a record of them in the rocks. But no evidence for them has been found there, though it has been diligently sought for in all quarters of the globe. We may confidently assert that while geological changes may quite possibly have taken place on a gigantic scale in the earliest ages of the earth’s existence, of which no geological record remains, there is no proof that they have ever done so since the time when the very oldest of the stratified formations were deposited. There is no need to maintain that they have always been conducted precisely on the same scale as now, or to deny that they may have gradually become less vigorous as the general sum of terrestrial energy has diminished. But we may unhesitatingly affirm that no actual evidence of any such progressive diminution of activity has been adduced from the geological record in the crust of the earth: that, on the contrary, no appearances have been detected there which necessarily demand the assumption of those more powerful operations postulated by physicists, or which are not satisfactorily explicable by reference to the existing scale of nature’s processes.

That this conclusion is warranted even with regard to the innate energy of the globe itself will be seen if we institute a comparison between the more ancient and the more recent manifestations of that energy. Take, for example, the proofs of gigantic plication, fracture and displacement within the terrestrial crust. These, as they have affected the most ancient rocks of Europe, have been worked out in great detail in the north-west of Scotland. But they are not essentially different from or on a greater scale than those which have been proved to have affected the Alps, and to have involved strata of so recent a date as the older Tertiary formations. On the contrary, it may be doubted whether any denuded core of an ancient mountain-chain reveals traces of such stupendous disturbances of the crust as those which have given rise to the younger mountain-chains of the globe. It may, indeed, quite well have been the rule that instead of diminishing in intensity of effect, the consequences of terrestrial contraction have increased in magnitude, the augmenting thickness of the crust offering greater resistance to the stresses, and giving rise to vaster plications, faults, thrust-planes and metamorphism, as this growing resistance had to be overcome.

The assertion that volcanic action must have been more violent and more persistent in ancient times than it is now has assuredly no geological evidence in its support. It is quite true that there are vastly more remains of former volcanoes scattered over the surface of the globe than there are active craters now, and that traces of copious eruptions of volcanic material can be followed back into some of the oldest parts of the geological record. But we have no proof that ever at any one time in geological history there have been more or larger or more vigorous volcanoes than those of recent periods. It may be said that the absence of such proof ought not to invalidate the assertion until a far wider area of the earth’s surface has been geologically studied. But most assuredly, as far as geological investigation has yet gone, there is an overwhelming body of evidence to show that from the earliest epochs in geological history, as registered in the stratified rocks, volcanic action has manifested itself very much as it does now, but on a less rather than on a greater scale. Nowhere can this subject be more exhaustively studied than in the British Isles, where a remarkably complete series of volcanic eruptions has been chronicled ranging from the earliest Palaeozoic down to older Tertiary time. The result of a prolonged study of British volcanic geology has demonstrated that, even to minute points of detail, there has been a singular uniformity in the phenomena from beginning to end. The oldest lavas and ashes differ in no essential respect from the youngest. Nor have they been erupted more copiously or more frequently. Many successive volcanic periods have followed each other after prolonged intervals of repose, each displaying the same general sequence of phenomena and similar evidence of gradual diminution and extinction. The youngest, instead of being the feeblest, were the most extensive outbursts in the whole of this prolonged series.

If now we turn for evidence of the alleged greater activity of all the epigene or superficial forces, and especially for proofs of more rapid denudation and deposition on the earth’s surface, we search for it in vain among the stratified formations of the terrestrial crust. Had the oldest of these rocks been accumulated in a time of great atmospheric perturbation, of torrential rains, colossal tides and violent storms, we might surely expect to find among the sediments some proof of such disturbed meteorological and geographical conditions. We should look, on the one hand, for tumultuous accumulations of coarse unworn detritus, rapidly swept by rains, floods and waves from land to sea, and on the other hand, for an absence of any evidence of the tranquil and continuous deposit of such fine laminated silt as could only settle in quiet water. But an appeal to the geological record is made in vain for any such proofs. The oldest sediments, like the youngest, reveal the operation only of such agents and such rates of activity as are still to be witnessed in the accumulation of the same kind of deposits. If, for instance, we search the most ancient thick sedimentary formation in Britain—the Torridon Sandstone of north-west Scotland, which is older than the oldest fossiliferous deposits—we meet with nothing which might not be found in any Palaeozoic, Mesozoic or Cainozoic group of similar sediments. We see an accumulation, at least 8000 or 10,000 ft. thick, of consolidated sand, gravel and mud, such as may be gathering now on the floor of any large mountain-girdled lake. The conglomerates of this ancient series are not pell-mell heaps of angular detritus, violently swept away from the land and huddled promiscuously on the sea-floor. They are, in general, built up of pebbles that have been worn smooth, rounded and polished by prolonged attrition in running water, and they follow each other on successive platforms with intervening layers of finer sediment. The sandstones are composed of well water-worn sand, some of which has been laid down so tranquilly that its component grains have been separated out in layers according to their specific gravity, in such manner that they now present dark laminae in which particles of magnetic iron, zircon and other heavy minerals have been sifted out