Page:EB1911 - Volume 12.djvu/782

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
GYMNOSPERMS
757


pits on the radial walls. The large medullary rays give to the wood a characteristic parenchymatous or lax appearance, which is in marked contrast to the more compact wood of a conifer. The protoxylem-elements are situated at the extreme inner edge of the secondary wood, and may occur as small groups of narrow, spirally-pitted elements scattered among the parenchyma which abuts on the main mass of wood. Short and reticulately-pitted tracheal cells, similar to tracheids, often occur in the circummedullary region of cycadean stems. In an old stem of Cycas, Encephalartos or Macrozamia the secondary wood consists of several rather unevenly concentric zones, while in some other genera it forms a continuous mass as in conifers and normal dicotyledons. These concentric rings of secondary xylem and phloem (fig. 9) afford a characteristic cycadean feature. After the cambium has been active for some time producing secondary xylem and phloem, the latter consisting of sieve-tubes, phloem-parenchyma and frequently thick-walled fibres, a second cambium is developed in the pericycle; this produces a second vascular zone, which is in turn followed by a third cambium, and so on, until several hollow cylinders are developed. It has been recently shown that several cambium-zones may remain in a state of activity, so that the formation of a new cambium does not necessarily mark a cessation of growth in the more internal meristematic rings. It occasionally happens that groups of xylem and phloem are developed internally to some of the vascular rings; these are characterized by an inverse orientation of the tissues, the xylem being centrifugal and the phloem centripetal in its development. The broad cortical region, which contains many secretory canals, is traversed by numerous vascular bundles (fig. 9, c) some of which pursue a more or less vertical course, and by frequent anastomoses with one another form a loose reticulum of vascular strands; others are leaf-traces on their way from the stele of the stem to the leaves. Most of these cortical bundles are collateral in structure, but in some the xylem and phloem are concentrically arranged; the secondary origin of these bundles from procambium-strands was described by Mettenius in his classical paper of 1860. During the increase in thickness of a cycadean stem successive layers of cork-tissue are formed by phellogens in the persistent bases of leaves (fig. 9, pd), which increase in size to adapt themselves to the growth of the vascular zones. The leaf-traces of cycads are remarkable both on account of their course and their anatomy. In a transverse section of a stem (fig. 9) one sees some vascular bundles following a horizontal or slightly oblique course in the cortex, stretching for a longer or shorter distance in a direction concentric with the woody cylinder. From each leaf-base two main bundles spread right and left through the cortex of the stem (fig. 9, lt), and as they curve gradually towards the vascular ring they present the appearance of two rather flat ogee curves, usually spoken of as the leaf-trace girdles (fig. 9, lt). The distal ends of these girdles give off several branches, which traverse the petiole and rachis as numerous collateral bundles. The complicated girdle-like course is characteristic of the leaf-traces of most recent cycads, but in some cases, e.g. in Zamia floridana, the traces are described by Wieland in his recent monograph on American fossil cycads (Carnegie Institution Publications, 1906) as possessing a more direct course similar to that in Mesozoic genera. A leaf-trace, as it passes through the cortex, has a collateral structure, the protoxylem being situated at the inner edge of the xylem; when it reaches the leaf-base the position of the spiral tracheids is gradually altered, and the endarch arrangement (protoxylem internal) gives place to a mesarch structure (protoxylem more or less central and not on the edge of the xylem strand). In a bundle examined in the basal portion of a leaf the bulk of the xylem is found to be centrifugal in position, but internally to the protoxylem there is a group of centripetal tracheids; higher up in the petiole the xylem is mainly centripetal, the centrifugal wood being represented by a small arc of tracheids external to the protoxylem and separated from it by a few parenchymatous elements. Finally, in the pinnae of the frond the centrifugal xylem may disappear, the protoxylem being now exarch in position and abutting on the phloem. Similarly in the sporophylls of some cycads the bundles are endarch near the base and mesarch near the distal end of the stamen or carpel. The vascular system of cycadean seedlings presents some features worthy of note; centripetal xylem occurs in the cotyledonary bundles associated with transfusion-tracheids. The bundles from the cotyledons pursue a direct course to the stele of the main axis, and do not assume the girdle-form characteristic of the adult plant. This is of interest from the point of view of the comparison of recent cycads with extinct species (Bennettites), in which the leaf-traces follow a much more direct course than in modern cycads. The mesarch structure of the leaf-bundles is met with in a less pronounced form in the flower peduncles of some cycads. This fact is of importance as showing that the type of vascular structure, which characterized the stems of many Palaeozoic genera, has not entirely disappeared from the stems of modern cycads; but the mesarch bundle is now confined to the leaves and peduncles. The roots of some cycads Roots. resemble the stems in producing several cambium-rings; they possess 2 to 8 protoxylem-groups, and are characterized by a broad pericyclic zone. A common phenomenon in cycads is the production of roots which grow upwards (apogeotropic), and appear as coralline branched structures above the level of the ground; some of the cortical cells of these roots are hypertrophied, and contain numerous filaments of blue-green Algae (Nostocaceae), which live as endoparasites in the cell-cavities.

Fig. 9.Macrozamia.

Diagrammatic transverse section of part of Stem. (After Worsdell.)

pd, Periderm in leaf-bases.
lt, Leaf-traces in cortex.
ph, Phloem.
x, Xylem.
m, Medullary bundles.
c, Cortical bundles.

 

Fig. 11.Ginkgo adiantoides. Fossil (Eocene) leaf from the Island of Mull.

Fig. 10.Ginkgo biloba. Leaves.
 

Fig. 12.Ginkgo biloba. A, Male flower; B, C, single stamens; D, female flower.

Ginkgoales.—This class-designation has been recently proposed to give emphasis to the isolated position of the genus Ginkgo (Salisburia) among the Gymnosperms. Ginkgo biloba, the maidenhair tree, has usually been placed by botanists in the Taxeae in the neighbourhood of the yew (Taxus), but the proposal by Eichler in 1852 to institute a special family, the Salisburieae, indicated a recognition of the existence of special characteristics which distinguish the genus from other members of the Coniferae. The discovery by the Japanese botanist Hirase of the development of ciliated spermatozoids in the pollen-tube of Ginkgo, in place of the non-motile male cells of typical conifers, served as a cogent argument in favour of separating the genus from the Coniferales and placing it in a class of its own. In 1712 Kaempfer published a drawing of a Japanese tree, which he described under the name Ginkgo; this term was adopted in 1771 by Linnaeus, who spoke of Kaempfer’s plant as Ginkgo biloba. In 1797 Smith proposed to use the name Salisburia adiantifolia in preference to the “uncouth” genus Ginkgo and “incorrect” specific term biloba. Both names are still in common use. On account of the resemblance of the leaves to those of some species of Adiantum, the appellation maidenhair tree has long been given to Ginkgo biloba. Ginkgo is of special interest on account of its isolated position among existing plants, its restricted geographical distribution, and its great antiquity (see Palaeobotany: Mesozoic). This solitary survivor of an ancient stock is almost extinct, but a few old and presumably wild trees are recorded by travellers in parts of China. Ginkgo is common as a sacred tree in the gardens of temples in the Far East, and often cultivated in North America and Europe. Ginkgo biloba, which may reach a height of over 30 metres, forms a tree of pyramidal shape with a smooth grey bark. The leaves (figs. 10 and 11) have a long, slender petiole terminating in a fan-shaped lamina, which may be entire, divided by a median incision into two wedge-shaped lobes, or subdivided into several narrow segments. The venation is like that of many ferns, e.g. Adiantum; the lowest vein in each half of the lamina follows a course parallel to the edge, and gives off numerous branches, which fork repeatedly as they spread in a palmate manner towards the leaf margin. The foliage-leaves occur either scattered on long shoots of unlimited growth, or at the apex of short shoots (spurs), which may eventually elongate into long shoots.