Page:EB1911 - Volume 14.djvu/881

From Wikisource
Jump to navigation Jump to search
This page has been validated.
848
IRRIGATION

the British occupation. The western, or Behera, canal was dug, but within its first 50 m. it passes through desert, and sand drifted into it. Corvées of 20,000 men used to be forced to clear it out year after year, but at last it was abandoned. Thus the whole system broke down, the barrage was pronounced a failure, and attention was turned to watering Lower Egypt by a system of gigantic pumps, to raise the water from the river and discharge it into a system of shallow surface-canals, at an annual cost of about £250,000, while the cost of the pumps was estimated at £700,000. Negotiations were on foot for carrying out this system when the British engineers arrived in Egypt. They soon resolved that it would be very much better if the original scheme of using the barrage could be carried out, and after a careful examination of the work they were satisfied that this could be done. The barrage rests entirely on the alluvial bed of the Nile. Nothing more solid than strata of sand and mud is to be found for more than 200 ft. below the river. It was out of the question, therefore, to think of founding on solid material, and yet it was desired to have a head of water of 13 or 14 ft. upon the work. Of course, with such a pressure as this, there was likely to be percolation under the foundations and a washing-out of the soil. It had to be considered whether this percolation could best be checked by laying a solid wall across the river, going down to 50 or 60 ft. below its bed, or by spreading out the foundations above and below the bridge, so as to form one broad water-tight flooring—a system practised with eminent success by Sir Arthur Cotton in Southern India. It was decided to adopt the latter system. As originally designed, the flooring of the barrage from up-stream to downstream face was 111.50 ft. wide, the distance which had to be travelled by water percolating under the foundations. This width of flooring was doubled to 223 ft., and along the upstream face a line of sheet piling was driven 16 ft. deep. Over the old flooring was superposed 15 in. of the best rubble masonry, an ashlar floor of blocks of close-grained trachyte being laid directly under the bridge, where the action was severest. The working season lasted only from the end of November to the end of June, while the Nile was low; and the difficulty of getting in the foundations was increased, as, in the interests of irrigation and to supply the Menufia canal, water was held up every season while the work was in progress to as much as 10 ft. The work was begun in 1886, and completed in June 1890. Moreover, in the meantime the eastern, or Tewfikia, canal was dug and supplied with the necessary masonry works for a distance of 23 m., to where it fed the network of old canals. The western, or Behera, canal was thoroughly cleared out and remodelled; and thus the whole delta irrigation was supplied from above the barrage.

The outlay on the barrage between 1883 and 1891 amounted to about £460,000. The average cotton crop for the 5 years preceding 1884 amounted to 123,000 tons, for the 5 years ending 1898 it amounted to 251,200 tons. At the low rate of £40 per ton, this means an annual increase to the wealth of Lower Egypt of £5,128,000. Since 1890 the barrage has done its duty without accident, but a work of such vast importance to Lower Egypt required to be placed beyond all risk. It having been found that considerable hollow spaces existed below the foundations of some of the piers, five bore-holes from the top of the roadway were pierced vertically through each pier of both barrages, and similar holes were drilled at intervals along all the lock walls. Down these holes cement grout was injected under high pressure on the system of Mr Kinipple. The work was successfully carried out during the seasons 1896 to 1898. During the summer of 1898 the Rosetta barrage was worked under a pressure of 14 ft. But this was looked on as too near the limit of safety to be relied on, and in 1899 subsidiary weirs were started across both branches of the river a short distance below the two barrages. These were estimated to cost £530,000 altogether, and were to stand 10.8 ft. above the river’s bed, allowing the water-surface up-stream of the barrage to be raised 7.2 ft., while the pressure on that work itself would not exceed 10 ft. These weirs were satisfactorily completed in 1901.

The barrage is the greatest, but by no means the only important masonry work in Lower Egypt. Numerous regulating bridges and locks have been built to give absolute control of the water and facilities for navigation; and since 1901 a second weir has been constructed opposite Zifta, across the Damietta branch of the Nile, to improve the irrigation of the Dakhilia province.

In the earlier section of this article it is explained how necessary it is that irrigation should always be accompanied by drainage. This had been totally neglected in Egypt; but very large sums have been spent on it, and the country is now covered with a network of drains nearly as complete as that of the canals.

The ancient system of basin irrigation is still pursued in Upper Egypt, though by the end of 1907 over 320,000 feddans of land formerly under basin irrigation had been given, at a cost of over £E3,000,000, perennial irrigation. This conversion work was carried out in the Basin irrigation
of Upper Egypt.
provinces situated between Cairo and Assiut, a region sometimes designated Middle Egypt. The ancient system seems simple enough; but in order really to flood the whole Nile Valley during seasons of defective as well as favourable floods, a system of regulating sluices, culverts and syphons is necessary; and for want of such a system it was found, in the feeble flood of 1888, that there was an area of 260,000 acres over which the water never flowed. This cost a loss of land revenue of about £300,000, while the loss of the whole season’s crop to the farmer was of course much greater. The attention of the British engineers was then called to this serious calamity; and fortunately for Egypt there was serving in the country Col. J. C. Ross, R.E., an officer who had devoted many years of hard work to the irrigation of the North-West Provinces of India, and who possessed quite a special knowledge as well as a glowing enthusiasm for the subject. Fortunately, too, it was possible to supply him with the necessary funds to complete and remodel the canal system. When the surface-water of a river is higher than the fields right and left, there is nothing easier than to breach the embankments and flood the fields—in fact, it may be more difficult to prevent their being flooded than to flood them—but in ordinary floods the Nile is never higher than all the bordering lands, and in years of feeble flood it is higher than none of them. To water the valley, therefore, it is necessary to construct canals having bed-slopes less than that of the river, along which the water flows until its surface is higher than that of the fields. If, for instance, the slope of the river be 4 in. per mile, and that of the canal 2 in. it is evident that at the end of a mile the water in the canal will be 2 in. higher than in the river; and if the surface of the land is 3 ft. higher than that of the river, the canal, gaining on it at 2 in. per mile, will reach the surface in 18 m., and from thence onwards will be above the adjoining fields. But to irrigate this upper 18 m., water must either be raised artificially, or supplied from another canal taking its source 18 m. farther up. This would, however, involve the country in great lengths of canal between the river and the field, and circumstances are not so unfavourable as this. Owing to the deltaic nature of the Nile Valley, the fields on the banks are 3 ft. above the flood, at 2 m. away from the banks they may not be more than 1 ft. above that level, so that the canal, gaining 2 in. per mile and receding from the river, will command the country in 6 m. The slope of the river, moreover, is taken in its winding course; and if it is 4 in. per mile, the slope of the axis of the valley parallel to which the canals may be made to flow is at least 6 in. per mile, so that a canal with a slope of 2 in. gains 4 in. per mile.

The system of having one canal overlapping another has one difficulty to contend with. Occasionally the desert cliffs and slopes come right down to the river, and it is difficult, if not impossible, to carry the higher-level canals past these obstructions. It should also be noticed that on the higher strip bordering the river it is the custom to take advantage of its nearness to raise water by pumps, or other machinery, and thereby to grow valuable crops of sugar-cane, maize or vegetables. When the