Page:EB1911 - Volume 17.djvu/479

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
MALARIA
463


observation, connected mosquitoes with malaria, and from time to time this theory found support in more scientific quarters on general grounds, but it lacked demonstration and attracted little attention. In 1894, however, Sir Patrick Manson, arguing with greater precision by analogy from his own discovery of the cause of filariasis and the part played by mosquitoes, suggested that the malarial parasite had a similar intermediate host outside the human body, and that a suctorial insect, which would probably be found to be a particular mosquito, was required for its development. Following up this line of investigation, Major Ronald Ross in 1895 found that if a mosquito sucked blood containing the parasites they soon began to throw out flagellae, which broke away and became free; and in 1897 he discovered peculiar pigmented cells, which afterwards turned out to be the parasites of aestivo-autumnal malaria in an early stage of development, within the stomach-wall of mosquitoes which had been fed on malarial blood. He further found that only mosquitoes of the genus Anopheles had these cells, and that they did not get them when fed on healthy blood. Then, turning his attention to the malaria of birds, he worked out the life-history of these cells within the body of the mosquito. “He saw that they increased in size, divided, and became full of filiform spores, then ruptured and poured out their multitudinous progeny into the body-cavity of their insect host. Finally, he saw the spores accumulate within the cells of the salivary glands, and discovered that they actually passed down the salivary ducts and along the grooved hypopharynx into the seat of puncture, thus causing infection in a fresh vertebrate host” (Sambon). To apply these discoveries to the malaria of man was an obvious step. In working out the details the Italian school have again taken a prominent part.

Thus we get a complete scientific demonstration of the causation of malaria in three stages: (1) the discovery of the parasite by Laveran; (2) its life-history in the human host and connexion with the fever demonstrated by the Italian observers; (3) its life-history in the alternate host, and the identification of the latter with a particular species of mosquito by Ross and Manson. The conclusions derived from the microscopical laboratory were confirmed by actual experiment. In 1898 Experiment. it was conclusively shown in Italy that if a mosquito of the Anopheles variety bites a person suffering from malaria, and is kept long enough for the parasite to develop in the salivary gland, and is then allowed to bite a healthy person, the latter will in due time develop malaria. The converse proposition, that persons efficiently protected from mosquito bites escape malaria, has been made the subject of several remarkable experiments. One of the most interesting was carried out in 1900 for the London School of Tropical Medicine by Dr Sambon and Dr Low, who went to reside in one of the most malarious districts in the Roman Campagna during the most dangerous season. Together with Signor Terzi and two Italian servants, they lived from the beginning of July until the 19th of October in a specially protected hut, erected near Ostia. The sole precaution taken was to confine themselves between sunset and sunrise to their mosquito-proof dwelling. All escaped malaria, which was rife in the immediate neighbourhood. Mosquitoes caught by the experimenters, and sent to London, produced malaria in persons who submitted themselves to the bites of these insects at the London School of Tropical Medicine. Experiments in protection on a larger scale, and under more ordinary conditions, have been carried out with equal success by Professor Celli and other Italian authorities. The first of these was in 1899, and the subjects were the railwaymen employed on certain lines running through highly malarious districts. Of 24 protected persons, all escaped but four, and these had to be out at night or otherwise neglected precautions; of 38 unprotected persons, all contracted malaria except two, who had apparently acquired immunity. In 1900 further experiments gave still better results. Of 52 protected persons on one line, all escaped except two, who were careless; of 52 protected on another line, all escaped; while of 51 unprotected persons, living in alternate houses, all suffered except seven. Out of a total of 207 persons protected in these railway experiments, 197 escaped. In two peasants’ cottages in the Campagna, protected with wire netting by Professor Celli, all the inmates—10 in number—escaped, while the neighbours suffered severely; and three out of four persons living in a third hut, from which protection was removed owing to the indifference of the inmates, contracted malaria. In the malarious islet of Asinara a pond of stagnant water was treated with petroleum and all windows were protected with gauze. The result was that the houses were free from mosquitoes and no malaria occurred throughout the entire season, though there had been 40 cases in the previous year. Eight Red Cross ambulances, each with a doctor and attendant, were sent into the most malarious parts of the Campagna in 1900. By living in protected houses and wearing gloves and veils at night all the staff escaped malaria except one or two attendants. These and other experiments, described by Dr Manson in the Practitioner for March 1900, confirming the laboratory evidence as they do, leave no doubt whatever of the correctness of the mosquito-parasitic theory of malaria.

It is possible, though not probable, that malaria may also be contracted in some other way than by mosquito bite, but there are no well-authenticated facts which require any other theory for their explanation. The alleged occurrence of the disease in localities free from mosquitoes or without their agency is not well attested; its absence from other localities where they abound is accounted for by their being of an innocent species, or—as in England—free from the parasite. The old theory of paludism or of a noxious miasma exhaled from the ground is no longer necessary. The broad facts on which it is based are sufficiently accounted for by the habits of mosquitoes. For instance, the swampy character of malarial areas is explained by their breeding in stagnant water; the effect of drainage, and the general immunity of high-lying, dry localities, by the lack of breeding facilities; the danger of the night air, by their nocturnal habits; the comparative immunity of the upper storeys of houses, by the fact that they fly low; the confinement of malaria to well-marked areas and the diminution of danger with distance, by their habit of clinging to the breeding-grounds and not flying far. Similarly, the subsidence of malaria during cold weather and its seasonal prevalence find an adequate explanation in the conditions governing insect life. At the same time it should be remembered that many points await elucidation, and it is unwise to assume conclusions in advance of the evidence.

With regard to the parasites, which are the actual cause of malaria in man, an account of them is given under the heading of Parasitic Diseases, and little need be said about them here. They belong to the group of Protozoa, and, as already explained, have a double cycle of existence: Parasites. (1) a sexual cycle in the body of the mosquito, (2) an asexual cycle in the blood of human beings. They occupy and destroy the red corpuscles, converting the haemoglobin into melanin; they multiply in the blood by sporulation, and produce accessions of fever by the liberation of a toxin at the time of sporulation (Ross). The number in the blood in an acute attack is reckoned by Ross to be not less than 250 millions. A more general and practical interest attaches to the insects which act as their intermediate hosts. These mosquitoes or gnats—the terms are synonymous—belong to the family Culicidae and the genus Anopheles, which was first classified by Meigen in 1818. It has a wide geographical distribution, being found in Europe (including England), Asia Minor, Burma, Straits Settlements, Java, China, Formosa, Egypt; west, south and Central Africa; Australia, South America, West Indies, United States and Canada, but is generally confined to local centres in those countries. About fifty species are recognized at present. It is believed that all of them may serve as hosts of the parasite. The species best known in connexion with malaria are A. maculipennis (Europe and America), A. funestus