Page:EB1911 - Volume 20.djvu/585

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PALAEOZOIC]
PALAEOBOTANY
533


Other Families.—The Marattiaceae are the only recent family of Ferns which can be supposed to have existed in anything like its present form in Palaeozoic times. Of other recent orders the indications are meagre and dubious, and there can be no doubt that a large proportion of Ferns from the older rocks (in so far as they were Ferns at all) belonged to families quite distinct from any which we recognize in the flora of our own day. Little or nothing is known of Palaeozoic Ophioglossaceae. Certain fructifications have been referred to Gleicheniaceae (Oligocarpia, fig. 15, E), Schizaeaceae (Senftenbergia, fig. 15, G), Hymenophyllaceae and Usmundaceae, and on good grounds, so far as the external characters of the sporangia are concerned; our knowledge of most of the Ferns in question is, however, far too incomplete to justify us in asserting that they actually belonged to the families indicated. In the case of the Osmundaceae there is good evidence, from anatomical characters, for tracing the family back to the Palaeozoic; their oldest members show a distinct relationship to the Botryopterideae, described in the next paragraph. Numerous more or less isolated fern-sporangia occur in the petrified material of the Carboniferous formation; the presence of an annulus is a frequent character among these specimens, while synangic sori are rare; it is thus certain that families remote from the Marattiaceae were abundantly represented during this period.

(After Renault.)
Fig. 16.—Zygopteris pinnata.

A, Group of sporangia, in surface view.

B, Single sporangium, in transverse section, showing annulus on both sides, magnified.

Botryopterideae.—The family Botryopterideae, first discovered by Renault, stands out with striking clearness among the Palaeozoic Ferns, and differs widely from any group now in existence. The Botryopterideae are chiefly known from petrified specimens; in the genus Botryopteris and certain species of Zygopteris we have a fairly complete knowledge of all parts of the plant. The type-genus Botryopteris, represented in the Permo-Carboniferous of France and in both the Lower and Upper Carboniferous of Great Britain, had a rhizome, with a very simple monostelic structure, bearing spirally arranged compound leaves, with lobed pinnules, probably of a somewhat fleshy texture. In the French species, B. forensis, the plant covered with characteristic jointed hairs, which have served to identify the various organs on which they occur. The sporangia were large pyriform sacs, shortly stalked, and borne in tufts on the branches of the fertile rachis, which developed no lamina. Each sporangium had, on one side only, a longitudinal or slightly oblique annulus, several cells in width; the numerous spores were all of the same size; certain differences among them, which have been interpreted as indicating heterospory, have now proved to depend merely on the state of preservation. The genus Zygopteris, of which numerous Carboniferous and Permian species are known, likewise had a monostelic stem, but the structure of its vascular cylinder was somewhat complex, resembling that of the most highly differentiated Hymenophyllaceae, with which some species of Zygopteris also agreed in the presence of axillary shoots. There is evidence that the stem in some species was a climbing one; the pinnate leaves, arranged on the stem in a two-fifths spiral, were dimorphic, the sterile fronds resembling some forms of Sphenopteris. The petioles have a somewhat complex structure, the bundle often having, in transverse section, the form of an H; it has been proposed to subdivide the genus on the details of the petiolar structure. It is characteristic of Zygopteris and its near allies that two rows of pinnae were borne on each side of the rachis, at least in the fertile fronds. On the fertile rachis the sporangia were borne in tufts, much as in the preceding genus; they were still larger, reaching 2.5 mm. in length, and had a multiseriate annulus, extending, however, to both sides of the sporangium (see fig. 16, A and B). In Stauropteris, a genus showing some affinity with Zygopteris, the branched rachis of the fertile frond terminates in fine branchlets, each bearing a single, spherical sporangium, without any differentiated annulus (fig. 17). The spores in the sporangia have been found in a germinating condition; the stages of germination correspond closely with those observed in recent homosporous ferns (fig. 18). This fact strongly confirms the conclusion, drawn from morphological and anatomical characters, that the Botryopterideae were true Ferns. The genus Corynepteris of Baily is interesting from the fact that its sporangia, while individually similar to those of Zygopteris, were grouped in sori or synangia, resembling those of an Asterotheca. The family Botryopterideae appears to have included a number of other genera, though in most cases the evidence from vegetative structure is alone available. The genus Diplolabis of Renault, shows much in common with Zygopteris as regards anatomical structure, but resembles Corynepteris in possessing a synangic fructification. The genus Asterochlaena of Corda with a deeply-lobed stele, goes back to the Devonian. The family as a whole is of great interest, as presenting points of contact with various recent orders, especially Hymenophyllaceae, Osmundaceae and Ophioglossaceae; the group appears to have been a synthetic one, belonging to a primitive stock (the Primofilices of Arber) from which the later Fern families may have sprung.

(From a drawing by Mrs D. H. Scott. Scott, Studies.)

Fig. 17.—Stauropteris oldhamia. Three sporangia borne on branchlets of the rachis. In A the stomium (st) or place of dehiscence is shown. B is cut tangentially. In C, p is the palisade tissue of the rachis. (× about 35.)

A number of genera of Palaeozoic “fern-fronds” have been described, of the fructification of which nothing is known. This is the case, for example, with Diplotmema, a genus only differing from Sphenopteris in the dichotomy of the primary pinnae, and with Mariopteris, which bears a similar relation to Pecopteris. The same holds good of the Pecopteroid Ferns included under Callipteris and Callipteridium. In such cases, as will be explained below, there is a strong presumption that the fronds were not those of Ferns, but of seed-bearing plants of the new class Pteridospermeae.

(From a drawing by Mr L. A. Boodle. Scott, Studies.)

Fig. 18.—Stauropteris oldhamia. Four germinating spores from the interior of a sporangium. All four are putting out rhizoids. In C, lying horizontally, an additional cell has been cut off between rhizoid and spore. (× 335.)

On the present evidence it appears that the class Filicales was well represented in the Palaeozoic flora, though by no means so dominant as was formerly supposed. The simpler Ferns (Primofilices) of the period are for the most part referred to the remarkable family Botryopterideae, a group very distinct from any of the more modern families, though showing analogies with them in various directions. On the other hand there was the far more complex Marattiaceous type, strikingly similar in both vegetative and reproductive characters to the recent members of the family. Although doubts have lately been cast on the authenticity of Palaeozoic Marattiaceae owing to the difficulty in distinguishing between their fructifications and the pollen bearing organs of Pteridosperms, the anatomical evidence (stem of Psaronius) strongly confirms the opinion that a considerable group of these Ferns existed.

Spermophyta.—The Pteridospermeae, for which Potonié's name Cycadofilices is still sometimes used, include all the fern-like plants which, on the evidence available, appear to