Page:EB1911 - Volume 28.djvu/601

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
WHEAT
581

bushel.” The second grade is known as “No. 1, northern spring wheat, sound, and well cleaned, composed of the hard and soft varieties of spring wheat.” So the varieties run—“No.2, northern”; “No. 3, northern,” &c.—down to the 18th, which is “no grade.” The official inspectors examine, grade and sample the wheat in the cars in which it is received at the great markets or elevators. The cars are sealed at the point of original shipment. The first thing, therefore, is to examine the seals to see that they are unbroken. The inspector then samples and examines the wheat, and enters the grade upon a blank opposite the number and letters of the car. His tag and sample go to the wheat exchange or chamber of commerce, where they are exposed in small tin pans, and form the basis of the trading. A few years ago the wheat received from the north-west was very clean indeed, but since the new land has all been cultivated the fields are growing more weedy, with the result that the wheat brought in is becoming mixed with oats and seeds of weeds, requiring more careful separating and inspection. After the inspector has finished his work the cars are resealed with the state seal, and await orders of the purchaser. The delay will not ordinarily be more than one day. The commission keeps complete records and samples of each car until the wheat has passed entirely out of the market. When disputes occur as to the grade they can thus be instantly settled. If the grade is changed after a second examination the state pays the expense of the inspection; if not, it is paid by the agent who raises the objection. Only about 5% of the samples are ever reinspected, and in less than 2% of these is the grade changed. The commission collects the small fee of 20 cents a car for its services as inspector, and later weighs all the wheat as it is distributed into the elevators. This small charge pays all the expenses.

The transportation of the wheat from the fields of the north-west to the seaport is a business of tremendous magnitude. Transportation. Most of this wheat goes by way of the lakes through the Sault Sainte Marie canal to Buffalo, where it is shipped by rail or inland canal to New York, Philadelphia or Baltimore. Duluth, on Lake Superior, is, surprising to say, the second port in the United States in point of tonnage. The Sault Sainte Marie canal passes two and a half times as much tonnage during the eight months it is open as the Suez canal passes in the entire year. The cheapest transportation in the world is found upon these lakes, the rate being only three-fourths of a mill per ton of wheat per mile. The greater lake vessels, called “Whalebacks,” carry cargoes up to 250,000 bushels, a bulk difficult to conceive. 700 bushels is a car-load. At that rate the cargo of 250,000 bushels will fill 360 American cars, or 9 trains of 40 cars each. At 20 bushels to the acre, this single cargo would represent the yield of two and a half farms of 5000 acres each, like that described above, with every acre in cultivation. The railways of the north-west have a monopoly of the business of hauling wheat, with the result that it costs 20 cents to ship a bushel of wheat from the Dakota field to Duluth, which is as much as it costs to forward it from Duluth to Liverpool. The bushel of wheat, or an equivalent amount of flour, can be shipped from Minneapolis or Duluth to almost any point in western Europe for from 20 to 25 cents.

What are the prospects of wheat production in the United States? In his presidential address before the British Association for the Prospect of wheat production. Advancement of Science (1900), Sir William Crookes painted a rather dark picture of the future of the world's wheat production. Among other things he said, “It is almost certain that within a generation the ever-increasing population of the United States will consume all the wheat grown within its borders, and will be driven to import like ourselves.” Americans think that this statement is altogether too pessimistic. Not sufficient account had been taken of the uncultivated land in farms, and of the possibilities of improving the yield, and still further cheapening the product. It is probable that the United States will by 1933 have a population of 133,000,000. This population would require a wheat crop of 700,000,000 bushels for its own use alone. Limiting attention to the great cereal-producing region described above, let us see what the prospects are for increasing the acreage and the yield. The fact that these States contain, according to the last census, over 100,000,000 acres of unimproved land, already enclosed in farms, suggests at once the great possibilities in wheat. But all this land is not immediately available for cultivation. The availableness of the unimproved land in these states is chiefly a question of population and physical features. In states like New York and Pennsylvania, which are much broken up by hills and mountains, and have already a large population, it is probable that the land available for wheat cultivation is now nearly all taken up, although they still have 30% of unimproved land in farms. In the great states of Michigan, Missouri, Wisconsin, Minnesota and the Dakotas there is still 40 to 50% of unimproved land in farms. There are few mountains and hills in these States, and there is still room in them for a large population. It is evident that in states like these wheat culture is destined to increase greatly. Twelve states, in this vast cereal-growing region—Ohio, Indiana, Illinois, Missouri, Kansas, Nebraska, Michigan, Iowa, Wisconsin, Minnesota, North and South Dakota—still have from 20 to 40% of unimproved land in farms. The total area of these states is nearly four times that of France. Their soil is primarily as fertile as hers. If we put the population of France at 40,000,000, the states in question could, at the same ratio, support a population of 140,000,000. France produced during the five years ending 1897 eight bushels of wheat per caput. At eight bushels per caput, the people in these twelve states alone could produce 1,120,000,000 bushels, or 420,000,000 bushels more than will be required by the population of 133,000,000 expected by 1933. This is a great manufacturing as well as a great agricultural region, and it is here, therefore, that a large part of this increase in population will be found.

It is evident that there is great room for improvement also in the matter of yield per acre. The average yield of wheat per acre has increased slowly in recent years. So long as there was so much virgin land to be brought under cultivation, it is surprising that it has increased at all, since the tendency everj'where is to “skin” the rich, new lands first. Mr B. W. Snow, formerly one of the statisticians of the United States Department of Agriculture, has shown (The Forum, vol. xxviii. p. 94) that the producing capacity of the wheat lands, under favourable weather, increased steadily during the period 1880-1899. He distinguishes between the actual yield and the producing capacity, and bases his comparison upon the latter. He takes the average for each year of five years between 1880 and 1899, and shows that the producing capacity per acre increased 0.5 bushel between the first and the second period, 1.3 bushels between the second and the third, and 1.4 bushels between the third and the fourth. In the period 1880-1884, inclusive, the maximum capacity was a little less than 14 bushels, while in the period 1895-1899 the maximum capacity exceeded slightly 17 bushels—an increase of 3.2 bushels per acre, or 23%, in less than twenty years. He says, “To account for this increase in the potential yield in our wheat-fields many factors must be taken into consideration. Among these may be mentioned improved methods of ploughing, tile drainage, use of the press drill, which results in greater immunity against winter killing, crop rotation, and, to a very small extent, fertilization. An important factor to be mentioned in this connexion is the change in the distribution of the acreage under wheat, consequent upon falling prices. A decline in the price of wheat rendered its production unprofitable where the rate of yield was small. Gradually these lands were passed over to crops better suited to them; while at the same time the wheat acreage was increased in districts having a better rate of yield.” He predicts that “the increase in the acre yields in this country has only begun. All that has been accomplished during the period under review may be attributed to improvements in implements for preparing the soil and planting the seed. Wheat is grown year after year without rotation—except in a few cases—on a third or more of our wheat acreage; not one acre in fifty is directly fertilized for the crop, and only a minimum amount of attention is given to the betterment of seed stock. If, in the face of what cannot be considered less than careless and inefficient agricultural practice, we have increased the wheat capacity of our land by 3.2 bushels per acre in so short a time, what may we not expect in the way of large acre yields before we experience the hardships of a true wheat famine?”

Diseases.—Wheat, like other cereals, is liable to epidemic diseases caused by parasitic organisms which prey on the plant tissues. Of these the rust, smut and bunt fungi are by far the most common and the most destructive. Rust alone is said to cause an annual loss of wheat in India amounting to from 4,000,000 to 20,000,000 rupees. We have no similar calculation of loss for Great Britain, where wheat is not so much grown, but it is well known that there is a continual, serious depreciation of value in the crops due to parasitic fungi.

The rust fungus, Puccinia graminis, is a Uredine belonging to the heteroecious group, that is, one that passes from one host to another at different stages of its life-history. In spring, while the wheat plants are still green and immature, the rust makes its appearance as orange-red spots or streaks on the stalks and leaves. These coloured spots are due to the presence of a sorus or layer of countless numbers of minute brown spores, the uredospores of the summer fruiting form. The fine thread-like filaments composing the mycelium of the fungus are embedded in the tissue underneath and around the uredo-sorus, and draw from the host the nourishment required. The spores, when mature, are easily detached, and are carried by insects or by the wind to other wheat-plants. If infection takes place, other son are formed in ten days or a fortnight under favourable conditions of moisture and warmth.