Page:Newton's Principia (1846).djvu/107

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Book. I.]
of natural philosophy.
101

Case 3. And if we suppose the angle D not to be given, but that the right line BD converges to a given point, or is determined by any other condition whatever; nevertheless the angles D, d, being determined by the same law, will always draw nearer to equality, and approach nearer to each other than by any assigned difference, and therefore, by Lem. I, will at last be equal; and therefore the lines BD, bd are in the same ratio to each other as before.   Q.E.D.

Cor. 1. Therefore since the tangents AD, Ad, the arcs AB, Ab, and their sines, BC, bc, become ultimately equal to the chords AB, Ab, their squares will ultimately become as the subtenses BD, bd.

Cor. 2. Their squares are also ultimately as the versed sines of the arcs, bisecting the chords, and converging to a given point. For those versed sines are as the subtenses BD, bd.

Cor. 3. And therefore the versed sine is in the duplicate ratio of the time in which a body will describe the arc with a given velocity.

Cor. 4. The rectilinear triangles ADB, Adb are ultimately in the triplicate ratio of the sides AD, Ad, and in a sesquiplicate ratio of the sides DB, db; as being in the ratio compounded of the sides AD to DB, and of Ad to db. So also the triangles ABC, Abc are ultimately in the triplicate ratio of the sides BC, bc. What I call the sesquiplicate ratio is the subduplicate of the triplicate, as being compounded of the simple and subduplicate ratio.

Cor. 5. And because DB, db are ultimately parallel and in the duplicate ratio of the lines AD, Ad, the ultimate curvilinear areas ADB, Adb will be (by the nature of the parabola) two thirds of the rectilinear triangles ADB, Adb and the segments AB, Ab will be one third of the same triangles. And thence those areas and those segments will be in the triplicate ratio as well of the tangents AD, Ad, as of the chords and arcs AB, AB.


SCHOLIUM.

But we have all along supposed the angle of contact to be neither infinitely greater nor infinitely less than the angles of contact made by circles and their tangents; that is, that the curvature at the point A is neither infinitely small nor infinitely great, or that the interval AJ is of a finite magnitude. For DB may be taken as AD3: in which case no circle can be drawn through the point A, between the tangent AD and the curve AB, and therefore the angle of contact will be infinitely less than those of circles. And by a like reasoning, if DB be made successfully as AD4, AD5, AD6, AD7, &c., we shall have a series of angles of contact, proceeding in infinitum, wherein every succeeding term is infinitely less than the preceding.