Page:Newton's Principia (1846).djvu/132

From Wikisource
Jump to navigation Jump to search
This page has been validated.
126
the mathematical principles
[Book I.

PROPOSITION XVIII. PROBLEM X.

From a focus and the principal axes given, to describe elliptic and hyperbolic trajectories, which shall pass through given points, and touch right lines given by position.

Let S be the common focus of the figures; AB the length of the principal axis of any trajectory; P a point through which the trajectory should pass; and TR a right line which it should touch. About the centre P, with the interval AB - SP, if the orbit is an ellipsis, or AB + SP, if the orbit is an hyperbola, describe the circle HG. On the tangent TR let fall the perpendicular ST, and produce the same to V, so that TV may be equal to ST; and about V as a centre with the interval AB describe the circle FH. In this manner, whether two points P, p, are given, or two tangents TR, tr, or a point P and a tangent TR, we are to describe two circles. Let H be their common intersection, and from the foci S, H, with the given axis describe the trajectory: I say, the thing is done. For (because PH + SP in the ellipsis, and PH - SP in the hyperbola, is equal to the axis) the described trajectory will pass through the point P, and (by the preceding Lemma) will touch the right line TR. And by the same argument it will either pass through the two points P, p, or touch the two right lines TR, tr.   Q.E.F.


PROPOSITION XIX. PROBLEM XI.

About a given focus, to describe a parabolic trajectory, which shall pass through given points, and touch right lines given by position.

Let S be the focus, P a point, and TR a tangent of the trajectory to be described. About P as a centre, with the interval PS, describe the circle FG. From the focus let fall ST perpendicular on the tangent, and produce the same to V, so as TV may be equal to ST. After the same manner another circle fg is to be described, if another point p is given; or another point v is to be found, if another tangent tr is given; then draw the right line IF, which shall touch the two circles FG, fg, if two points P, p are given; or pass through the two points V, v, if two tangents TR, tr, are given: or touch the circle FG, and pass through the point V, if the point P and the tangent TR are given. On FI let fall the perpendicular SI, and bisect the same in K; and with the axis SK and principal vertex K describe a parabola: I say the thing is done. For this parabola (because SK is equal to IK, and SP to FP) will pass through the point P; and