Page:Online Statistics Education.pdf/29

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

Percentiles
by David Lane

Prerequisites

  • none

Learning Objectives
1. Define percentiles
2. Use three formulas for computing percentiles

A test score in and of itself is usually difficult to interpret. For example, if you learned that your score on a measure of shyness was 35 out of a possible 50, you would have little idea how shy you are compared to other people. More relevant is the percentage of people with lower shyness scores than yours. This percentage is called a percentile. If 65% of the scores were below yours, then your score would be the 65th percentile.

Two Simple Definitions of Percentile

There is no universally accepted definition of a percentile. Using the 65th percentile as an example, the 65th percentile can be defined as the lowest score that is greater than 65% of the scores. This is the way we defined it above and we will call this “Definition 1.” The 65th percentile can also be defined as the smallest score that is greater than or equal to 65% of the scores. This we will call “Definition 2.” Unfortunately, these two definitions can lead to dramatically different results, especially when there is relatively little data. Moreover, neither of these definitions is explicit about how to handle rounding. For instance, what rank is required to be higher than 65% of the scores when the total number of scores is 50? This is tricky because 65% of 50 is 32.5. How do we find the lowest number that is higher than 32.5% of the scores? A third way to compute percentiles (presented below) is a weighted average of the percentiles computed according to the first two definitions. This third definition handles rounding more gracefully than the other two and has the advantage that it allows the median to be defined conveniently as the 50th percentile.

29