Page:Our knowledge of the external world.djvu/131

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

and smaller, while of any two of the set there is always one that encloses the other, then we begin to have the kind of conditions which would enable us to treat them as having a point for their limit. The hypotheses required for the relation of enclosure are that (1) it must be transitive; (2) of two different spatial objects, it is impossible for each to enclose the other, but a single spatial object always encloses itself; (3) any set of spatial objects such that there is at least one spatial object enclosed by them all has a lower limit or minimum, i.e. an object enclosed by all of them and enclosing all objects which are enclosed by all of them; (4) to prevent trivial exceptions, we must add that there are to be instances of enclosure, i.e. there are really to be objects of which one encloses the other. When an enclosure-relation has these properties, we will call it a “point-producer.” Given any relation of enclosure, we will call a set of objects an “enclosure-series” if, of any two of them, one is contained in the other. We require a condition which shall secure that an enclosure-series converges to a point, and this is obtained as follows: Let our enclosure-series be such that, given any other enclosure-series of which there are members enclosed in any arbitrarily chosen member of our first series, then there are members of our first series enclosed in any arbitrarily chosen member of our second series. In this case, our first enclosure-series may be called a “punctual enclosure-series.” Then a “point” is all the objects which enclose members of a given punctual enclosure-series. In order to ensure infinite divisibility, we require one further property to be added to those defining point-producers, namely that any object which encloses itself also encloses an object other than itself. The “points” generated by point-producers with this property will be found to be such as geometry requires.