Page:Popular Science Monthly Volume 16.djvu/15

From Wikisource
Jump to: navigation, search
This page has been validated.
5
THE RECENT PROGRESS OF SOLAR PHYSICS.

physical constitution, and perhaps of its past history with that of other suns, and even assumed to give us information whence we might infer something as to their mass, as well as physical constitution, while it has immensely increased the number of lines mapped twenty years since in the spectrum, and modified the ideas we then entertained as to the interpretation of these lines themselves.

The important question of the amount of heat received from the sun has been the subject of almost uninterrupted experiment and study during the period under review, but without essentially altering the data of Herschel and Pouillet which we already possessed. In this field the French physicists and our countryman, Mr. Ericsson, have been prominent workers, and we have attained results possessing all desirable certitude relatively to our knowledge in other branches.

Investigations on the solar temperature have been carried on by many observers, but with results which are thus far less satisfactory,

I am painfully sensible of the inadequacy of this review of the history of solar physics, but the brief time before me warns me to come from its past to its present. Within the last two years the difficulties I have alluded to, as so great in eye-studies of the solar surface, have been singularly modified by the remarkable advance of solar photography at the hands of M. Janssen. When I recently visited his observatory at Meudon, I found him producing original negatives on a scale of nearly thirty English inches to the solar diameter, and which bear enlargement to nearly ten feet with remarkable precision; and one of these negatives, which presents over a million discrete cloud-forms, can be taken in 13000 of a second. In another branch of photography, that of the reproduction of spectral lines, for which so much is due to Rutherfurd and Draper, I know nothing more surprising than the recent success of Captain Abney (of the Royal Engineers) at South Kensington, who has photographed the red end of the spectrum, and far beyond the red end, to a wave-length of about 12,000. As this statement may of itself convey no clear idea to some of my audience, let me explain in less technical language that it means we can now photograph objects in absolute darkness—objects which are not luminous—simply by the heat they give out. This is a discovery which obviously lends itself to important practical applications, while it is of further interest as bringing another proof of that identity of heat and light, with radiations differing only in wave-length, long since surmised by physicists, and asserted prominently by Dr. John Draper, whose photographs are also the earliest in the path which Captain Abney has carried on by independent methods. Theoretically, there would seem to be no limit to this power of photography so long as objects radiate any heat whatever.

Of recent coronal studies, I have only to speak of the opportunity afforded by the eclipse of last year in our own Western territory. Observed as it was. in the pure air of the Rocky Mountains, we found