Page:Popular Science Monthly Volume 21.djvu/602

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
586
THE POPULAR SCIENCE MONTHLY.

materially reduced if the resistance of these latter can be increased; while any improvements affecting the number of lamps per horsepower diminishes both the interest account by reducing the plant and the actual cost of production.

How far coal-gas can go in a reduction of the cost of production it is difficult to say, but I think the lower limit may safely be taken at the point at which the sale of residuals pays for the coal. Both of these items—cost of coal and prices of residuals—are practically beyond the control of a gas company. The coal is already purchased in the open market at the lowest figures at which it can be obtained, and the market for residuals depends chiefly upon the development of chemical industries, which can hardly be hastened by the action of a gas company. This market is a steadily growing one, and it is not impossible that the residuals will in time pay for the coal, though it is hardly probable. The items of labor and distribution can not probably undergo any considerable reduction. The limit, then, below which it does not appear that there is any probability of coal-gas falling in this country is 46 cents per 1,000, which is a figure that may be reached by electricity without assuming anything less, probable than the above supposition respecting gas. It is only necessary to get ten lamps per horse-power, and produce the latter with three pounds of coal an hour, to bring the cost down to 47 cents, exclusive of the lamps.

As a present competitor, however, what is known as water-gas—gas produced by the decomposition of steam in the presence of coal or oil—appears to be the more formidable. This mode of gas-manufacture has the advantage of coal-gas in a lessened cost of the producing plant, a smaller labor account, and a decreased depreciation of the generating apparatus. Its successful competition with coal-gas ultimately depends upon what the latter can make of its residuals, as there is no offset of this kind in its case, but with present conditions it can go below it. The producing portion of the plant costs but little more than half that for coal-gas, while the labor is about a third, and depreciation but slightly more than this. A sixteen-candle gas will require three gallons of oil per 1,000 feet, and can be made with oil at 5 cents a gallon and coal at 84.50 a ton, at an expenditure of 28 cents per 1,000 feet for materials. The total cost will not exceed 60 cents.

Such, then, appears to be the relation of these two agents on the basis of illumination solely, but it must not be forgotten that the amount of light which each plant can furnish does not represent the actual relative capacity of the two. The electric plant can be run not only four hours a day for light, but any further number of hours for power, without any increase of the machines. The gas-plant, on the other hand, would have to be increased, to furnish both power and light. That this advantage of electricity is liable to be a very important one will hardly be questioned, when the extent of the field open to electro-motors is borne in mind.